z/0S
2.4

ISPF Software Configuration and Library
Manager (SCLM) Guide and Reference

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
647.

This edition applies to Version 2 Release 4 of z/OS (5650-Z0S) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-06-22

© Copyright International Business Machines Corporation 1990, 2021.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

LT =T] =R (|
L= 1+ 1 (=PRI ¢ (|

(2] =Y = Vo =TI ¢ 4 | ||

WHO SHOULA USE thiS....eeiieiiecieeeee ettt st e et e e st e e at e e e st e e e abee s nsee e nsaeennseeennseean xxiii
(00T 01 (=Y o | SO SRRRSRRRE xxiii
How t0 read the SYNTaX did@ramiS. ...ttt et ee e et e e te e e s te e s s ate e e aseeesnsaeeensaeennsaeennseens XXiV

Z/0S INFOIMAtION. . e iiiiriririrerereeieieietereceeecereceresesesesesesesesesesesesesesssssssssasssssssenses XXIX

How to send your comments to IBM.........cccccieuiiniiniiniiniiniieiieieiececnncsessessassanees XXXI
If you have a teChnical Problemi. e e e e ae e e ae e e aee e eaes XXX

SuMMAry of Changes.....cccciuiiiiiiiiiiiiiiiieiieiieieiecteciestestesisssasssssssssscsnssesses XXXiil

Summary of changes for z/OS Version 2 Release 4 (V2R4).......o e ccieeecieeeciee ettt sevaeesevnee s XxXiii
Summary of changes for z/OS Version 2 Release 3 (V2R3) ... iciee et ecveeescveeesveee s XxXiii
Summary of changes for z/OS Version 2 Release 2 (V2R2)......coccieeicieeccieeccieecctee st cctreesevneeseveee s XxXiii

What's in the library?.......ccieiiiiiiiiiiiiiiiiiiiececinieciesiesiestessesssscsscsssssssss XXXV

Part 1. Project Manager's GUIde.....c.ccciuiiuiiniiniiniieiieiieiieiieniececsecsscsessasssssassassssssnes 4

Chapter 1. Defining the project @NVIFONMENTt.......cccvii it re e et e s naeesaaea s 3
Running different versions of SCLM in multiple partitionS........cceccveeecieeecie e 3
Overview of project Manager taSKS......iii ittt re e et e e ae e e areeeearee e ntaeeenees 3

o Yot de (=Y TaTi Ao a e - - VSR 3
Generating a ProjeCt ENVIFONMENT........cii ittt eee e s ree e e sree e e be e e s bee e s bee e sabeeesnsaeeenes 4
Step 1: Determine the project's hiErarChy.....cuu e ccieeccee e e e e e 4

Primary non-key group testing tEChNIQUES.......uiiciieeeieecee ettt e ree e aee e 6
Step 2: Identify the types of data to SUPPOIt.....cccueicciii e 8
Step 3: Establish authorization COUES.....cuuiiiiiiiieece e te e e e tee e ba e e ebaeeeaes 8

Using authorization codes to control SCLM Operations.......cccceccueeeeieeeciieeeeiieeecceeecree e veeeeveens 8

ALLOWING PArallel UPAates......uicciie ettt et e e e s tee e s e e e s bae e e abaeeenseeesasaeesnseas 10
Step 4: Allocate the PROJIDEFS data SEtS....cccuiiiciieeiiieciiie sttt ettt esive e e ive e eaaeeesnaeeenaee s 11
Step 5: Allocate the project partitioned data SEtS.......ccciiieciiiicciiiecie e 12

Data set NAMING CONVENTIONS......ciiiiieieciee ettt ettt ecee e re e e s te e e etae e ebee e sbeeeenteeeenbeessnsaeennseas 12

Flexible naming of project partitioned data Sets.......ccccceeieciiiecii i 12

Number of data Sets t0 AllOCAtE....cccuiiviiriiiiiieceee e s a e s e sbe e seeens 13

Versioning partitioned data SEtS.......uiiiiiiiiie et e e e e 16

Project partitioned data SELS......cciii et e e e e et e e e eraeeenes 17

SPACE CONSIABIALIONS. ..cceteieeieeceiee et ettt e et e e te e e te e e eate e s te e sateeeesaeeesteesseeesseeesseeesseesensens 17
Step 6: Allocate and create the control data SetS........cccieieciiieciie e 17

Create the accoUNting data SEtS......uiiiiiiicciecceeeeee e et re e et e e e e e e e e naae s 18

Create the eXPort data SEtS.....cuii it et e e e e e e e e e e baeeeabe e e nsaeeeasaeann 20

Create the audit CONtrol data SEtS.....ciciiiiiiiiinii it st e e e s teeseaesaeeens 20

Create the Cross-dependency data SEt.......cei i iciei it 22

Create the SCLM CONTrol data SEt....uiiiieriiiieirieriecte ettt ettt s re e sie e st e reesasesbeesaneens 22
Step 7: Protect the project @NVIFONMENT.......coccuiiiiiee ettt e ee e e ae e e 23

PROJDEFS Aata ST et e e s e e e s e e e e e e e e e e e e e e ee e e e s sbaa s s aa s sassseseaaaanes 23

[To][=Toa a0 =T a () Ao] aT=Te e FoN o= WY =Y SN 23
(000] 1) £ 0] N =1 - TET=Y (T TSP 23
Step 8: Create the project defiNiTioN.........uiiii e e e rre e e e e 23
Alternate Project AefiNItIONS. ... i e e e e et e e e s b e e e s s e neaaeesennnaeeas 24
Create the hierarchy defiNitioN........eei i e e e e e e r e e e e raee e e e ennes 25
Set the Project CONTIOL OPTIONS......uuiiei ettt ertee e e eeree e e e e srer e e e senreee s eenreeeesesnsenesesannes 26
Define the language defiNitioNS......cic it e e s e e s s ra e s sbaeeeaes 32
Step 9: Assemble and link the project definitioN.. ... 38
Assemble and LINK EXaMPLe.....uii et e e e e e e et ee e e e e saree e e e eenraee e senraneeeenns 38
PrOJECE MANAEET SCENAIIO.c.utiiiciieiictieeeiieeeiteesete e sttt e serteesbteesbeessbeessbeessbaeesseesssaesssseessseessseesssees 39
Prerequisites for defining an SCLM Project.....cccciiiiiiiiiiiiiiieeiteenieeesiee st ssieessvee s svee s sree s 39
EXQMPLE PrOJECT OVEIVIEW ..o . iiiieeieiieee s ettt e eecttee e ee e ttee e e e ettee e e s e easeee e s senbeeeessenstaeeesensanaesennssnnenann 40
Preparing the example project NierarChy......ui et s 42
Understanding the sample project definitioN.......cciiiciiiriiiiniiiieeeeeee e 45
Preparing the example ProjeCt data......ci ittt be e s e e 47

(O] g T Vo] LY R U LYY o =S 53
Specify the change code verification FOULING......cc.iiiiiiiieiiereceecee et aae s 55
Change code verification routing EXampPle.....cu.iiiiieiiieieieee e ee e e s 56
Specify the Build and Promote User EXit rOUtINES........ceiiiiciiieieeciieee et e e e 57
Build and Promote User EXit routing reqUIreMENTS......ccccccuiieeieeciieeeeecireeeecreee e eeerereeeeeseeeeeeennns 58
Build and Promote User EXit OUtpUt data SEtS.....cciicciiieieeiiiee ettt e e e e e e 60
Specify the Audit Version Delete User EXit rOULINE.......coivicuiiiei ettt 60
Audit Version Delete User Exit routing reqUIr€MENTS........ueeieeciieeeeeciieeeeccireee e ecree e e eecreee e e e enseeeas 61
Specify the Delete USer EXIt FOUTINE....cuii ittt e eere e e e rre e e s e b e e e s e sae e e e e eanreeas 62
Delete User ExXit ROULINE r&QUIrEMENTS.......uiiii ettt e e erre e e s eeeee e e e e rae e s e e nnaeeeeean 62
Delete User EXit OUTPUL data SET......uuiiiiieciiieeccceee ettt e e e ere e e s e e be e e e s e ba e e e s e ranee e e e 63
USEr eXit FOUTING EXAMIPLE...uiiiiieciiee ettt e e et e ctee e e et e e e e st tee e e e enbeeeeeeenbteeeseensseeeesasssaeseesnssnnessanns 64
Chapter 3. Additional project Manager tasKS......ucuiiiiiriiierieeeieesrre et see e see e s see e ssaaeessaeeessaeeas 69
SPLLHING ProjeCt VSAM data SEIS...cuuiiiiiiiiiiieiiteecite sttt ste st e st e ssite e s sate e sateesseeesstaesseaesanseenn 69
Backing up and recovering the project enVIrONMENT.......cccciiiriiiiiiieireeeee e e 70
Synchronizing acCOUNTING data SETS...c.uiiiiiiiiiiieriiie ettt s e e s e e s re e s s be e s beessabeessaseess 70
Maintaining aCCOUNTING AAta SETS...ciiiiiiiiiiieiiiie ettt ettt sbe e s re e s s be e s s sbe e s sbeessabaessnsaesas 71
Modifying the Delete from Group dialog INTErface.....ccuiiviiiiiiiiiiiiieeieeeeeee e s 71
Implementing PAckage DaCKOUL........cii ittt s sae e s saee e s saeas 72
Chapter 4. Converting ProjeCts 10 SCLMu ittt ettt ee e s aee e s sbe e s sabe e s saseesnanas 75
Prerequisites for eXiSting NiErarChies......cuii it e s e s be e s eaeeas 75
Create alternate projeCt definitioNS.......ceiiie i e srrre e s e raee e e e enaeeeeeeanes 75
Create architecture definitions for the ProjeCt......u e 75
Register existing PDS members With SCLM.........ciiiiiiiiiiiiienieeseesste st e st s seessvee s ree s seessans 76
Introducing fixes to the converted hierarChy.......c.oiiiiiiieiieee e s 77
Chapter 5. Language definition CONSIAEratioNS.......cuiivieiiiieiiiieinieesrte e srte s see e ssee s sree e sree s saeessbeessaveas 79
Using multiple translators in a language definitioN.......cccociiiiiiirriieinieeeeeree st 79
INVOKING USEr-defiNEd ParSEIS....uuiiiciiiiiiie ittt ste e s te e s ste e sssteesssbeesssseessssaessssaesnnes 82
Defining information tracked by SCLM.....ccciiiiiiiiiieniecciteete ettt e s 83
WETTING ThiE PSSO e ciiiiiiiiieitte ettt ettt e s sate e s ate e seate e s steesastaesssteesnteesasteesnnsaesnnes 83
Telling SCLM hOW 10 INVOKE YOUT PAISEiiiiciiiieiieieiteeeiteeeiteesieeesreeesseessseesssseessssessssseesssseesnns 84
Processing conditionally saved COMPONENTS......civciiiriiiiiiecriee ettt see e s ae e s see e s saee s 93
Example of processing conditionally saved COMPONENTS.....ccccuiiiiiieriiiieriiienieeere e eesaeeeas 93
Setting uUp the Project defiNItION. ... re e s e e s sreeeeaee 93
Specifying the locations of included MEeMDBErS........oii it 94
=Y 0] o] (= TSP 95
DYNamMIC INCLUAE TrACKING....iiiiiieieieieieeete ettt ettt e s e e e s saee e s bbe e s saaeessseesasseesseeesnsaesn 98

B] oTW L LT=] A (=Y] = (o] TSR 99

Configuring the iNput List translators. ... iciei e 100

Defining @ New [aNZUAZE 10 SCLM...cuiiiiiiiieiiceiieeecite ettt ettt e stee e s saae e ssaae e sare e sssaaesneeesneaenn 100
Using DDnames and DDname substitution LiSTS........ccciviviiiiiiieiniieinieecnee et 100
Showing users how to write CC architecture definitions.........cccvveieiicieiicienncie e 110
Convert your JCL decks to architecture definitionS.......ccuueeieeccieee e e 111
Defining @ PreproCeSSOr t0 SCLM....iiiiiiiiieeiiieeite sttt sttt s s e s st e s s e e e s bae s sbeeesabaessaneas 111
Passing the source t0 the COMPILET.......iiiiiiiiieeee e s 113
Converting JCL to SCLM language defiNitioNS.....cocciiiecieiiiieeeiieeeeeesee e siee e sree s svee s sraeesaee 115
[21=) (o (Y TU N o T=T=11 o O PP 116
Capabilities and rESTIHICTIONS. ...cii i iiee et e e e e etree e e e e e e e e s nbe e e e e senseeeeeeesrenesans 116
Converting JCL cards to SCLM mMacro StatemMeENtS.....ccciiieiiiiriieiniee et 117
Chapter 6. Using SCLM and Tivoli Information Management for z/OS.........cccovevvviiiiniiennieenniieenseeens 125
= Te (U =Te I=T)Y T o] o Ta aT= 2 SO 125
Description of user program iNTEraClioN......cciicieiiiieiiiiee sttt see e sree e s saee e s e e s sbee e sans 125
B oYU N o T U= g =1 (=T T USPPPRRNE 125
(O] oY oY T 1E=y i 0] o 1 - | S USSR 125
Information Management ParamEerS. ... it ittt et e s e s e e s e e e s bae s sbeessnnees 126

N O o F=Y =T = = TR 126
PrOZIam TlOW..ccieiiiieiieieiie ettt ste e st e s st e e s sate e s s be e s sabeeesabaeesssaessabaesentaessnsaeenbaeenns 127
T go] o] o Tol=T1-T o= SRS PRRRN 127
D=1 1] (= TSR 128
Chapter 7. Understanding and using the customizable Parsers......ccccccvcveeicieeicieencieeeciee e ssee e 129
LIl o F: U= €3 T o] £ 1V o 1Yo SR 129
Sample [aNgUaBE defiNITIONS....cccuiiiiiieieiierreeeee et e s e s sbe e s beesssbeessaraeeas 129

P arS eI EI O LiISTINES . utiiiiieiiitieeeittee ettt ettt srte e et e e st e e st e e s bee e sbteesbaeesbaeesabaeesabeesssaeessaeesnseeesnse 130
MOAITYING ThE PAISEIS.ccuuiiiiiiiiiieeieiee ettt e st e s s e e s st e s s abe e s sbee s s beessabaessssaessssaessssaessseesan 130
Adding more elaborate parsing Error MESSALES.uuircierriieeerieeeriteesieeesseeesseeessreesssseesssseessanes 130
Appending to the error LISTING file.....ciu i 132
COMPILING TN PAISEIS. .utiiiiiieieiieeecte ettt ettt e st e e st e e s bae e s bt e e sbaeesbaeessbaesssaesssaessseeesnsaesnnns 133

Part 2. Developer's GUIde......ccccciuiiuieiieieiienieteiiececectecactessecassessecessesssessecassessscess 13D

Chapter 8. The Software Configuration and Library Manager.......ccceeevveeirieeinvieeiniieesnieessieesseeesseeesnnes 137
SCLM ProOjECt ENVIFONMENT...uiiiiiiciiieee ettt e e ectee e e eecteee e eestee e e e e s steeessestaeeeeenbesesseanseesessassenesessssensenan 137
(UEY=T =Y o] o] L Tot=N o] a [-1 - VO 137
Chapter 9. USING SCLM fUNCLIONS. ...cccuiiiiiieiiiieeiitesrieessiee st e s ree s st e s st essbeessbeeesbeessabeeessseessaseessnnens 141
Name retrieval with the NRETRIEV COMMANd.....cuiiiiiiiiiiieiiieiieeenitessieesseessiee s iee e sveessiee e s 141
SCLM considerations for NRETRIEV.......coiciiiiiieiiiieiniieerteesieeesite s siee s sieesste e svee s svaessaeesssneas 142
SCLM M@IN NENU..ettiiittitiitite et seie e st e st e seate e s seeesssteesssteesasseesasseesassaesasseesasseesasseesasseesasseessssaesssees 143
SCLM MaiN MENU OPTIONS. ..eiiiieiiiieeeeecieee e ecctee e eeette e e e eeatreeseesbeeeesessseeeeesssesesssnnsseseesensssnessennne 143
SCLM main menu action bar ChOICES......ocuiiiriiieeccee e s s 144
SCLM main MenU PANELfIELASuuiieee et e e e e e e e ae e s e e naee e e e senneeeeeennns 144
VIBW (OPTION L) .utiieiiieeeiieceiee et e ettt e et e e te e e tte e e etteeseaeeeeestee e seeeeseeeeseaeestaeansteesseeesstessseeesseeasnsens 144
SCLM View - Entry Panel action bar ChOICES........cuiicciiiii et 145

T [y (o] o1 AT o T2 OO OO OO 147
SCLM Edit = ENtry Pan@l fieldS....uuiiiie ettt ettt e s ervte e e s evree e s e e saee e e e sennaneeeennns 148
Comparison of SCLM and ISPF dIiTOrS.......uiiiiiciiieeiccciiee e ecieee e eettee e eeeetre e eeree e e s eabaee e s e naaee s 150
SCLM COMMANT MACTOS.c..utttierieriieeraitersreessreessstesssseesssaesssseesssseessseesssseesssseesssseesssseessseessnsens 150
ULILITIES (OPTION 3) ittt e e ctee e et e e e bt e e e ebee e e bt e e ebee e ebeeeeseeesnsaeeesaeesnseaesnseeeanses 154
[o 2= 1A U 1L Y25 SRR 155
TN Te] T 4]) /ST PO PSP 175
Database CoNtENTS ULILitY...cuuieieeciiie ettt eetee e e s et e e e et e e s e ebre e e e e e naee e e e ensaeeeeennns 177
ArchiteCture REPOIT ULty .. .eeeieecieiee ettt ettt e e e s e e e e s e e e e e s e ase e e e s e nnaneeseanns 186
(0o T LU 1 (1 7SS 193

| 0] o] AU] 1 SRRt 197

Audit and VErsion ULILTY...ueee ittt e e e rveee e s e e aree e e e e nnee e e s snnraaeesesnseneseesnnes 201
Delete from GroUP ULIlTY ...ttt eree e e e teee s e e ere e e s e are e e e s e b e e e s senbaaeesenaneneeas 211
Package BackOUt ULILITY.....cueeiiieiiieeiies ettt iee s siee s st e s st e s sbe e s s e e s sbeeesanees 214
UNIT OF WOTK ULILITY ittt sttt e e sttte e s e s tee e e s e ae e e e s s nee e e s s nraaeesennseneanennnes 222

Y O I I e o (o] Y SR 228
SCLM SAICN. ettt ettt s e e sa e e s ate e s bee e s bte e s bee e s bee e s ntaesabeee s reeesanteesareaesan 230
BUILA (OPTION)ittt ettt e ettt e et e e e eta e e e ta e e e tae e e saee e ssee e saee e sseasssaesassaesnseesnssaesanses 235
(2] 0 1] o I (=T o Yo o A=) Una] o1 L= USRS 238
Build INfOrmation EXAmMIPLE....uiee ettt e e eeree e e e e etae e s s e e nnte e e e eenbeeeesennsaneesenns 240
o] alo] L= (o] o] A 1o a 1= USSR 243
o]0 gT0] (=T 2U=Y o o] PP 246

P rOCESSING BITOIS. ..tiiiiiiiicieteciee sttt s st e s sttt e sttt e sttt e ssateesasteesasteesassaesasseesasseesssseesasseesasseesssseessseen 249
(07T 00l g F=1a Yo I (oY o 1o T 1 <) FEN SO 250
EQSY CMAS (OPION BA)...eiiiiie ettt ettt e e te e eeteeeeteeeeataeeesteeeestaeesssaeaessaseassaaeassasaassassansasannes 250
BatCR PrOCESSING .. tiiiciiieiiieeiciee ettt ettt ettt e sttt e s sbte e s b ae e s ateesabeeesaseeesseeesssaesssaesnseesansaenn 250
(O 10010k Ao T1<] o Lo T 1 4o o PSSR 251
Sample Project ULility (OPTION 7) ...ttt ettt ettt eetee e et e e e ae e e e taeeeseeeesaeeesaeaensaaans 252
Maintaining SCLM administrators (OPtioN A).....ieceecieeceeeiecceecee et ste e e see e e saeesreessaeens 253
Chapter 10. DeVElOPMENT SCENAIIO.....cuiiieeieciieeeeeecttteeeeectree e e ecrreeseebteeeeesessteeeesenssaeessesssesessssssneseennnes 255
Understanding the hierarchy and the SCLM Main MENU......coccciiiriiiiriieiniiieenieeeriee e ssee e ssee e 255
Understanding the architecture definition........ccoviiiiiiiinriiieecec e 256
Sample SCLM developmMeENnt CYCL. ...ttt e e e e e bee e e s e a e e e e e e aree e e e ennreees 258
USING the SCLM @AITON . .uuiiiiiiiiieeeiee ettt sttt e st e s ste e s te e ssaeeessseeeseseaesssteessntaesnsseesansaesnnes 260
Understanding the LBrary ULILTY . ..ottt 261
(O 1] =3 = TU V] Fo PO PRSPPI 262
Editing the Member t0 COMMECT BITOS....uiuuiiiiiieiciteeciee ettt see e s see e s sae e sssaeesseeesaeaesn 263
Attempting to promote a member before performing a build........ccooceviriiiiniiiiniiineeee, 263
Rebuilding the changed MEMDET ... s s 263
Using the Database Contents ULiLitY.. ..ottt s e 264
Promoting a member SUCCESSTULLY......uiiiiiiiiiceete et s 266
Drawing down @ promoted MEMBDEIiiv ittt ettt et be e s ee e s s be e s sabeessasaeesaeas 267
Performing project hoUSEKEEPING ACTIVITIES...c.ccuiiiiviiiiiiieiciee et see e ssee e ssaeeesane 267
Chapter 11. ArchiteCture defiNitioN........ci et eerre e e e e e e e e e e e e b e e e e br e e e e eenneneas 269
ATCHITECTUIE MEBIMDEIS. ...ttt e st e e s bt e e sebteesbeeesbeeesseaesseeesaseeesaseessans 269
Kinds of archit@CtUre MEMDEIS...cocuuiiiiee et ee e s e ee e s sbe e e saeas 269
Defining compiler processed COMPONENTS......ciiciiiriieirieerite et e st e sttt e ssreeessareessseeessseeessseeesssseens 270
Compilation control architeCture MEMDEIS........uiii i e e e aere e 270
SPECITYING SOUICE MEMDETS.....iiiiiiiieieeceee et e s be e s e e s sabeeesaneas 271
Defining link-edit processed COMPONENTS....c.ccuiiiiiiiiiiierriteeree ettt e et essreessbee s s reeesbeessbeessans 271
SCLM build and coNtrol tiMESTAMPS.....cviiicciieeeccciiee et e et e e eeer e e e rre e e seebee e e e s e sreeeeeennsens 272
Defining application and subapplication COMPONENTS........civiiiiriiiiiiieceeeee e 272
Generic arChiteCTUrE MEMDEIS.uiiiiiectee e ee s e s bee e s aee e s aee e s seeesaeas 273
Build and promote by Change COUE.....uiiiiiiiiicte e s s s ae e s 273
ArChITECTUIE STAtEMENTS. ..ottt sttt e e s sbe e e sbe e e s bae e sbaeesbaeesbaeessaeesans 275
Y LT 0 aTT o (o) o 4= SO PR 275

S ATEIMENT USES. .ttt ettt e et e e e e s et e e e sttt e e s et e e e s seteeeesneeeenenanne 275
Sample application using architecture defiNitioNS.......cciiicieiiiiiieece e 281
Ensuring synchronization with architecture definitionS........ccvviieiiiiiiiiec e, 284
201 Ca I oYU L o U1 £ SRS 286
LU o] EoN o 101 e o TN 01U £ SR 286
SY=Te LU =T Y A F= 1 oTU1] Ko o TUL 01U £ 286
Default oUtPUL MEMDEN NAMES.....coii et re e e et e e e e e erbe e e e e e baee e e eeseaeeeeennnes 286

Languages Of OUTPUL MEMDEIS......uiiiiieicte ettt st e s sbe e s sae e s saeeessaeeas 286

Part 3. Advanced TOPICS...cccieituieiterinieiierieienieceetestecastessncessasssesssssssessscasssssssasseces 28 7

Chapter 12. Managing COMPLEX PrOJECES...ciiiiiiiriieiriieeriieeeiteesreeessrtesssreeesbeeesbeessbeessreesssaessaseessasens 289
B0 0] oF: (o1 a- 1YYty 0 1= A =Tl]] o [1= USSRt 289
DEPENAENCY PrOCESSING. . .viiieurieriitieriieeriteersieesareesateesaeeesssseesseeesssseesssseesssseessseessseesssseesssseessssees 289
Propagating applications to other databases........cccvvcieiiiiiiiiiiiieee e 290

Chapter 13. SCLM SUPPOIT fOr DB2...uiiiiiiee e cciiee ettt e e ecttre e e eetee e e e e sbee e e s ssabee e e s snbeeeessenntaneseesssnessann 291
TS (o Ao = F PSRRI 292
Information for project admMinNiStrAtOrS.uii i e ere e e e e ebre e e e e raee e e s enaeees 292

The FLMCSPDB DB2 bind/free tranSlator..... .. et e e e e e e e eeeees 292
Generating a ProjeCt ENVIFONMENT.iiiiiieieiieerteeee et e et e s st e s sbe e e sbeessbeessabaeesasaeas 292
INfOrmMAation fOr AEVELOPEIS.....uiiiee et e e ree e e e et e e e e s sabee e e s eabteaeesensseneeeennnes 295
GETTING STAMTEU. c.eiiiiciei ettt eee e st e e s bt e e s bt e e s bteesbeeesseeesstaesaseessseaesasseesaseeesane 296
Create a program that has SQL StatemMeNntS.....c.ccevcieiiiieiiiieecte st 296
Create a generic architecture definition to control the bind.........ccecoeeviiiiniiiiniiiinieee, 297
Create a high-level (HL) architecture definition to link link-edit to bind........ccccceeveeveereeeiennnen. 297
Alternative High Level (HL) architecture definition to link link-edit to bind........ccccceeeveeieennnnee. 297
Other architecture definition CONSIAEratioNS.......ccicviiiiiiiiiciee e s 297
Create DB2 CLIST ... ittt ettt ettt e ettt e e ettt e e s et e e e e s asee e e s s aneeee e s st e eeesanseeeesesnneeaesannnes 298
MOIE COMPLEX SCENMATIOS. e uurieeeeeirireeeeeiiteeeseairtreeeesistreeeeaasseeeeeaaseeaessaasseasesassssesesssassesessssssssessanssenes 301
Storing bind options in a bind CONtrol file......ouciiiiciiinie e 301
Binding on differEnt LPARS........iii ettt sttt et e s ae e s sae e s sbe e s sae e s saaesnaeeas 301
Rebinding at lower levels after a promotioN.......cuiiiciiiiiiieiiieeecriee e s s 302

Chapter 14. SCLM support for workstation bBUilds.........ceeeeeciiieiceciiiee e e 303
= Te LU= paT=Y 0 €SS 303
Overview of WOrkstation BUILO........ceieiiiiriiiiieetecee et e s s e e s saee e sneas 303
Information for the ProjECt MANAEET.....ccciii ittt ee e s s saee e s saeeessaeeas 305

NAMINEG CONVENTIONS...ciictteiiiieeiiieeeiiee ettt e srte e sttt e sstteesbeeessbeeesbaeesssaeessaeesstessasaessssaeesssaesssseeesnns 305
AN BUAEES. e e ieeeteet ettt ettt e e ettt e e e e et e e e s et e e e e e s b et e e s e b et e e e e s bt e e e e e nbeteeeeareaeeaeenateeeeeanneeeeeenne 305
What workstation t00LS Will YOU USE?....ece ettt eeree e e e e evrre e e e e e e e 306
WOrkstation INFOrMAtION. .. .ciii ittt e ee s aee e s aee e s saeeessaeeesneeas 306
More information on SCLM, ISPF, and workstation builds.......c.cccceevieiriiiiniiiiniiieniieceieeeeeen, 306
ISPF Sample and Macro LIBrari@s.. ... cieie ettt crree e e vree e e e ee e e s enneeeee s 307
INformation for the AEVELOPET e e e e e e e ebee e e e et ae e e e e naaeeeeeas 308
Migrating applications INTO SCLM......cuiiviiiiiiiiinieeete ettt ste e s seee e s sae e e ssraeessseaesaeee s 308
Architecture definition members for workstation applications.........ccceeciieeieccieeeeccceee e, 308
SPECITYING OPTIONS..ciittiiiiieiiciee ettt sttt e s see e s saee e s ssb e e s sbteesssseesaseaessnseesasseesssaesansaenn 309
Including outputs from other build STEPS......iiiiiiiiiiiiieecre e s 309
Running multiple workstation COMMAaNAS........ccueiiiiiiiiieeiiieerie st ssee e ssree e sreeesreeesane 310
Sample [angUage defiNITiON.. ..ottt sre e st e e s s te e s see e ssaeeessaeeessnaaesan 310
LA Lo Ny €= LA o] T =Y U] J USSR 313
Directories and file NAMIES......cii ittt s ste e s s te e s sate e ssateessaeeesssteessseaesans 313
Multiple builds 0N 0NE WOIKSTATION.....cccicciiieeicciiiee et eceee e e e cree e e e e e ae e e e e nraeeeeeeasseeeeeennes 314

Chapter 15. Leaving a Member Behind 0n PromotioN.......cceivcieiiiieiiiieeiiee et sseeesseeeseee e 315

Setting a member as Not being Promotable.......i i 315
Using the N line command in Library Utilities (option 3.1) or Unit of Work (option 3.11).......... 316
FLMCMD NOPROM SEIVICE...ciicutiiiiiieieitieesiteesitesssieeesitesssteessseessseesssaessseessssaessseessssasssssaesssses 317
FLMLNK NOPROM SEIVICE...uiiiiiiiiiiieiiieeieieessieessteessitesssseeessseeessseesssseesssseessssessssseesssseesssseessssens 317

Process of not promoting a member (REBUILD).........ccccueeiirceeeieeieesieeeesreeseeesveeseesseeessaesseesaeeas 318

Process of not promoting a member (NOREBUILD)........ccceeviereeriieeneeeeieeseeseeesveeseeeveesseesseesneens 322
SCLM project setup when promoting with no rebuilding of build maps.....cccccccevvveveicieiiniiennnnen. 323
Build containing a non-promotable member (NOREBUILD).......c.ccccveevieereesiieenee e eeeesee e 323

vii

Promote containing a non-promotable member (NOREBUILD) from the same level

containing the NOPROM MEMDET......cooiiiiiieteetete ettt st 325
Viewing the non-promoted backup MembBEr. ...t 326
Promote containing a non-promotable member (NOREBUILD) from a level not containing

the NOPROM MEMDET ...ttt ettt et e s s ee e s sate e s saseessseeesssseessssaesnnes 326
Build containing a non-promotable member (NOREBUILD) at a level which does not

contain the NOPROM MEMDET......coiiiiiiictecteeetteete et sie e s e e sbae e 326
Build after promotion of the non-promotable member (NOREBUILD).........cccoceeeveeeeieeecnreeennen. 327
Restricting the setting of NON-Promotable........ociiiiiiiiii e 328

Chapter 16. Member encoding and deCOMING.......ueiviiiiriiiiriiieeiieeriie sttt e e e s see e s saeessaeeessaeeas 329
Setting up encoding and AECOAING......ccuiiiriiiiiiie ittt e s e e s s be e s sbeessraeesraeenaee 331
Removing encoding and dECOING......ccccuiiiiiiiiiieeiiieeeeiee ettt et essreessaee e sereeessateessseeessseeessneeesans 331

CHAPLEr 17. SCLM SECUITY..uuteiiieiiieeeeeiiteeeeeeiteeeeeecttteeeesetteeeeeebteeeesestasesaesssssesseanssesssssnnsenessssnseneesennsses 333
SCLM INTEINAL SEBCUIITY . .eiiiieciieieeccieee ettt e e e e re e e e et e e e s e bteeesseseeeeeeenseeaeeeanstaeessessanessennnsnns 334

EN@DLING SECUITY . eiiiiiiiicieeiiee ettt e st e e st e e st e e s sabe e s steessseesssseesanseesnsseesas 334
Determining the type of security t0 imMplemMEeNnt.......coociiiiiiiiiieieee e 334
SettiNg UP SCLM DSN SECUITY.ceieuiiiiititieiiieeeiiteeeitteesstteessieeesssteessaeesbeeesssaeessseeesssseesssseesssseesssseens 337
Setting UP SCLM SUDPIOJECT SECUTITY . .c.utiiiiiiiritieeiieeeie ettt see e e s e s saee e s saee e s aaeesaeas 338
Setting UP SCLM SEIVICE SECUITY..cicuiiiiiiiiiiiieieitescieeseteesetteeseieeeseaeeesseeeseateessaeeesseeesaneessaseeesan 344
Working With SUDPrOJECT SECUNTY...uiiiiciieieiieecteeee ettt e s be e s sbe e e sbae e sraeesans 345
Migrating members into SCLM SUbProject SECUNTY....cuiiviiiiriiiiirieeeite st 345
Viewing the SUDProjECt MEMDEIS. ..ottt 347
Resolving authority ProblEMS. ittt be e s s e e s s be e e sans 348

Part 4. SCLM Ref@IENCe...ucueieirieierieieirereetereeretereeteressesesessssesessesessssssessssesessssesese 3 DS

Chapter 18. INVOKING the SCLM SEIVICES.....ciiuiiriiiiiiiieriitesrieeesite st esstee s st e sseeessbeessbeessaseesssseessanes 355
INVOKING the SCLM SEIVICES...cccutiiieiieiiiteieiee et e st e st e st e s steessteessataesssteesssteessstaesssseesssseessnsassnnes 355
Command invocation 0f the SCLM SEIVICES......uiiiiiiiriiieriiterrieessie st see e sreesse e s saeesseeesnaeas 355
THE FLMCMD INTEITACE. ..ciiitti ittt ettt ettt ettt s ate e s ee e s aee e s saee e ssaee e ssaee e sbeaesseessnnens 355
Call invocation Of the SCLM SEIVICES.....uivciiiiriiieeiteeeteeesteeste et see s see e s siee e s seeessaeeessseaesnseeas 358
The FLMLNK SUBrouting iNteIrfaCe.....cuvuii ittt st see e s 358
Selecting a service from the FLMCMD Services MENU.......ccicvieriiieriiieniieennieesseeesseeessseessaneens 361
Entering a command to invoke a specific service panel......ccoccvveieiicieiiiieinsieeeeeeee e 362
TYPES Of PATAMEBTIEIS. .. utiiiiiccieee ettt e e e e e e e e e e e beee e s e s b teeeessnseeeeeeansteeeeeasseseesesssenesannn 362

| ST o = T = o] (= S U 368
SCLM SEIVICE FELUIN COUBS. ... uiiiiiiiiiiiee ettt seiee st e st e st e s et essateessateessateessaseesssseesasseesssseesnnseenn 373
FLMCMD command proCessSor FEtUIM COUES....ciiiuiiiiiiiiiieeeecireeeeecirteeeeecnreeeeessnreeeeeesnsseeessessseneeaans 373
FLMLNK call proCesSOr FETUIMN COUES....uuiiiiiiiiieiieciiiee e eeiitee e eectteeeseetre e e e e s areeeessnbeeeesenseeeessessenesans 374
SCLM SEBIVICE MESSAEES. c.uvteieurierruiierrittersttersttesstteesseessstessseeessseesssssesssssesssseesssssesssseeessseesssseesssseees 374
CHAPLEI 19. SCLM SEIVICES...uttitiieitiieeeeeiiieeeeeiiteeeeeeteeeeseestaresaeastseeeasstasesesassesessassesseesasssssesessssnsesannns 375
SCLM SEIVICE AESCIIPIIONS. ¢eiiiiecitieeeeccitteeeeectte e e e este e e e eeteeeesesrteeeseesssteeesesssaeeeeenseeessenssesesssanssnnesnnns 375
ACCTINFO—Retrieve Accounting INfOrmMation.......ccueiecieieiieiniie ettt sie e esee e s see e s seee e 376
AUTHCODE—Retrieve or Set Authorization Code for Selected Members........cccocceevvceeiriiennceennnnen, 380
BUILD—BUILA @ MEMIDET ... tiiiiiiiieite ittt sttt st e st e s te e s te e s sate e ssate e ssateessstae s seeesseeesnseaesnnes 384
CCEXITS—RuUN User EXits WIthOUTt EQif.....cccccviiiviiiiiiieiiiieinieecsiee e ssiee e ssvee s seeessveessee e ssseeesnns 388
DBACCT—Retrieve Accounting Records for a Member......cocuiiviiiiiiiiiniiieiieccieccee e 390
DBUTIL—Generate a Tailored Output Data Set and RepOrt......cccccieeeeicccieee e 391
DELETE—Delete Database COMPONENTS.......ciiiicciiieececiiee e ettt e e eeire e e eerre e e e s e sbereeesesseeeseesseneesennns 396
DELGROUP—Delete from Group Database COMPONENTS.......cccuveeeeeeiieerieeiieeecccieee e eereee e s e veeeeeenns 399
DSALLOC—ALllocate Data Sets fOr GroUP/ TYP .. i iciieeeeeecitreeeeettre e s eeatreeeeesnreeeeseabeeeeseessaneeens 403
EDIT— Edit a Member of @ Controlled Library..........e ettt eevrre e e veee e 406
END— ENd an SCLM SEIVICES SESSION...cciciiiiiiiiriieeriieesiteesseeessieeessseeessseeessseesssseesssseesssseesssseesssees 409
ENDEC— Encode and Decode MEMDEIS.......ciiiciiiiriieieiieieiteeeiteseieessieessseeessveesssaesssveesssaessseesnnne 410

viii

EXPORT—Extract SCLM Accounting Information for @ GroUp......cceecueeveieernieenniieessieesseesseeesseeeens 412

FREE—FFEE @n SCLM ID...ccii ittt ettt ettt e et e e ettt e e s e st e e s s nnee e e s s mnneeeeesanneeeeennnne 415
GETBLDMP—Retrieve Build Map INformation.........ccuueeeieciiee it e vre e e e 416
GETXDEP—return cross-dependency information........ccuueiieccieeiiccciiee e e e e e 419
IMPORT—Import SCLM Accounting Information to Current Project.......ccceceevrveernieenniieenniieennneenn. 422
INIT—GENEerate @n SCLM ID...cco ittt ettt e ettt e e sttt e s et e e s e et e e e e s nneeeeesnneeeeeas 425
LOCK—Lock a Member or ASSign an ACCESS KEBY...iivvuiiirrieiiiiiieiitesiteesiteessieeessseeesseneesssaeesseessssseeas 426
MIGRATE—Create Accounting for Selected MemDbErs........ccciiiiiiiiiiiiniiierceee e 430
NEXTGRP— Retrieve the Next Group in an SCLM HierarChy......cccoccuveeiieciiiee e 434
NOPROM—Change Promote PrOCESSING......cccciiriiiiriiieriieesnieessieessreessseessseesssseesssseesssseessssesssnes 437
PARSE—Parse a Member for Statistical and Dependency Information........cccccccveeeeeccieeeeeccieeeeeenns 438
PROMOTE—Promote a Member from One Library to ANOther......ooccuiieiiecciiee e, 440
RPTARCH—Generate an SCLM ArchiteCture REPOIt.....cccuuiiieieciiieeeeciiee et e et e e eevee e e e nane e 444
SAVE—Lock, Parse, and STOre @ MEMDEcuiiiiiiiiiieeiee sttt sttt et e essabe e ssaaeesareeens 447
SCLMINFO—Return Project INfOrmation......c.ueeeiccciieee ettt eeree et e e e s s e raee e e e e nneeae s 451
START—Generate an Application ID for a SErviCes SESSION......ciiieccieeeeeiciieeeeccrtee e eecree e eeeree e 454
STORE—Store Member Information in an Accounting RECOId......ccivvieirieiiniieiniieieiee e esiee e 455
UNLOCK—Unlock a Member in a Development Library.......eeoecciee et 458
VERDEL—Delete Version and Audit INfOrmation.......cceeviiieiniieinieeineesiee e ssiee e sveessvee e 460
VERHIST—Retrieve Versioned Member INformation.......ccccoeieieiereiieiniieneee e esee e ee e 462
VERINFO—Retrieve Version and Audit INfOrmation.......ccccevcieiriiiieiieeniienieceee s e s 464
VERRECOV—RECOVET @ VEISION. . uttiiciiiiiiieeiiiitesiieessteessiteessseeessseeesssseesasseesssseesssseesssseesssseessseessseesns 468
XDEPUPDT—Update Cross-dependency INfOrmation........ccceeeeciiieeieciiiee s cciiee s eccreee e eeceree e eeanee e 471
Chapter 20. Sample programs USING SCLM SEIVICES...ccccutirriiierriiieiiiieisieessreessiteessseessseessseessseessssees 473
e T o= =Y =Y 1] o] (= TSRS 473
Main Program FLMSRVL......cooiiiiiiiieiiieeesiieessie st e st essee e st e ssre e s be e s s beessabaesssseessssaessaseessasens 473
Included Member FLMSRVLD......cuiiiiiieriieeriiteeiieessie e ssite e st e ssee e ssareesssaeesssbeesssseesssseessaseessaseas 477
Included MembBer FLMSRVILS........uiiiiiriteeiee ettt s st essiee st e s s bee s s e e s sbae s s neesssaessaseessnnens 479
I o 0] o] 1SRN 483
(0 g F= Vo] L=Y b T O M N 3 = Tl 0 1SR 487
NOtes 0N USING the SCLM MACTOS.....iiiiciiiiiiiieiieesite ettt eite e sttt sree e st e s st e s sbaessbaessbaeessaeessaeesane 487
Using SCLM variables in SCLM MaCIOS......cccviieieiiiieeiiieesiieeseteeseieesssieeesseesssseesssseesssseesssseessanes 488
FLMABEG MACHO0. it iittttiietttee ettt e ee ittt e e s ettt e s e e steeeesasee e e s s nnbeeeesanseeeesaaasateeaaansteessennreaeesananneeens 489
FLMAEND MACKO. .. tttttieiitieteeiittee e e ettt e e e et tee e sttt e e ssstteeeeeuneteesseaseaeeseasseeeeesnsaeeeesanneaeeesannseaeesaannes 489
FLMAGRP IMACKO. e uiitteieeittet ettt ettt e ettt e e sttt e e sttt e e s e bt e e e e e s sstee e e e sseeeeaenseeeeeeanneeeeesansaaeeanan 489
FLMALLOGC MACKO0. . tiuttteteeeitteeeeeiiteee e et te e s e eneteesesnsteeeesanseteeesanetteesaaseteeeeaneeeeesenneaessennsaeesesanneeeas 490
FLMALTC MACKIO. .. tttteeeiittteeeeittte e e ettt e et te s e e et te e e e s nste e e e s nnee e e e s aneeeee s nseeeeaaanneteeseenseeeeseanseeaesanannen 506
FLMATVER MACKTO. . ettttieiitteeeeeitee e e ettt e ettt e e e sttt e e e se ittt e e sesbeteesesussteeee s nneeeeeeannbeaeesanseeeesaanneaaessanns 509
FLMOCNTRL MICTO0.ce ittt ettt ettt e ettt e e e ettt e e s bt te s s e bt te e e e e sseeeeeeanseeeeeenneteeeeaneeeeeeanseeeas 512
FLMCPYLB MACKO...ttttieuutteeaeeiiteeeeeeitteeesettteesesseteeseessteeeesnseeeeseauseteeaeansaeeeeaanneeeessannseaessasnneneesannne 536
FLMGROUP IMACIO. et uiittteieeitteeeeettee e sttt e e e ettt e s e ettt e s se st te e s e asbteeeesnneeeeesanneeeessanneeaeeaesnseeeesaannnnens 538
FLMINCLS MACK0O. . utttttieeiiteeeeeiiteee e ettt e e s ettt e e e e eatt e e s s ueetesseusateeeesnseeeee e nseeaeesaaneeeeesanseeeeeaanneaeessanns 540
FLMLANGL MIACTO..tttttiittieeieitte e ettt e e et te e e ettt e e s e et e e e seneeeeeseaseteesesuseeeeaesnsaeeeeenneeeeeeanseaesanannes 543
FLMLRBLD MACIO.ctttttttitiiiiiiiiitttteete et e e s e ettt et e e e s e e s e enrre et eeeeeeee s e s s s nnssraeeeeeaeesaesesaannnnnereeeneaeeesas 546
FLMPROJ MACKO. .. uttteiieiiiteee ettt ettt e e ettt e e e st e e e sttt e e seabete e s e aseteeeesanneeeeeeaaneeeeeeanseeeesaanneeeessanns 547
FLMNPROM MACKIO. .. ttttieiiitteeeeiitie e e ettt e ettt e e e sttt e e e seusbt e e e seaeeteesesssteeeaensteeeeanseaesaeanseeeeaasanseaeeaan 547
FLMSYSLB MACKIO...ttttieiitteteeeittee e e ettt e e sttt e e sttt eeseeseeeeseenbeeeeseasbaeeaesnseeeeesanseaeeesaneaaeesannseneesannnee 549
FLMTCOND MACTO..etttieiutteteeeiiteeeeeiieteeesettteesesureteeseenrteeeesaaseeeeseaseteesasansaeeeesanneeeessannseeessaansneeesasnne 550
FLMTOPTS MACKO. . utttieiietitee ettt e ettt e e ettt e e ettt e e sttt e e s e bt e e e seaseteeeesnseeee e e nneteesesnseaeeeaanneeaenss 553
FLMTRINSL MACKO. .. uttttiieeiitieeeeettte ettt e ettt e e et e e e e s bt e e e e s st e e e e s eseeeeeeseaneeeessenneetessenseeeeeesnneeeeann 555
FLMTY PE MACKO. ..ttt ittt ettt e ettt e e e ettt e e ettt e e s e abee e e e s eunete e e senneeeessaaseteesaansnteesasnseeeeeannnne 560
Chapter 22. SCLM translators. .. iiee e ciiee e eccitee e eectee e e e e e e e e e stee e e e e s btee e s essbeeeeesnseeaeesessaneessnsssnesanan 563
FLMCSPDB DB2 Bind/Free tranSlator.. e e ettt s e s e e s e e e e e e e e eeeeeeneeees 564
FLMDTLC DTL Processor Build translator........ciiiiieiiiiiiniieciee ettt e e s s 568
FLMLPCBL COBOL PaISEr...eiiiiiiitieeieeiiteee ettt e e ettt e e e sttt e s sttt e e sssuseeeeseeneteessenseteesesnneeeeesnneeeenns 569

FLMLPFRT FORTRAN ParSEr...ciiiiieiiiieieieerettesett st seeee st st ssr e semr e semn e s et e semneesemneesemneesenneens 572

FLMLPGEN GENeral PUIPOSE PalSEr....uuiiiiciiiieeieciiieececctttee e e ectieeeeeenteeessesnsaaesessnsseessssnseesssssssnsesnnns 576
FLMLRASM REXX ASSEMDLET ParSEIiiiiiiiieiiiiieiieiniiieesiieesiieessieeessieesssieeessseessssesessssnessseessssenessnees 581
FLMLRCBL REXX COBOL PaISErutiiicieiiiiieiiieeseiteesietesssiteessseesssseesssseessaseesssseessssesssssessssseesssseessssees 585
FLMLRCIS MVS C/C++ parser with include Set SUPPOIt.....cccueieeiecciiiee ettt ecree e e eeveee e e 589
FLMLRC2 C, C++, and Resource file parser for workstation SOUrCe.......ccuvveereciieeeeccciieeeeeciveee e 592
FLMLRC37 REXX C370 PalISEr....ciiccteiiciieeeiiieeeitieesitteesiteesssteessstessssaesssseesssseesssssesssseessssessssssessssassnnne 595
FLMLRDTL REXX DT L PAISEr..ciiicuiieiiieiiiieeriieesiieesnieessieeesssteesssseesssseesssseesssssesssseesssseesssseessssesssnseesas 599
FLMLRIPF Script and OS/2 IPF SOUICE ParSEr.....uiiiccciiieeeeciiieeeccieeeeeecitee e s eeitee e s esnveee s sessaeeeseennnns 600
FLMLSS GENEral PUIPOSE ParSEr.ccc e iiiieeceiieee ettt e eettte e e e ettt e e e e ecvte e e s esvtee e s sesseeessenssnesssnnssnsansnnns 603
FLMLTWST Workstation BUild translator........ecieeecieieieicieeeieccite st sie e evee s svee s svae e 607
FLMTBMAP Build Map Print - BUild tranSlator.......ceecccuiiieeccciieee et eecvie e e eeree e e e vee e e e 618
FLMTMJI Interface to JOVIAL COMPILEr..uiii i iiieeieeiiee ettt ettt e e eeree e e e eevte e e s e nta e e s st ae e e s e ennreeas 619
FLMTMMI Interface to DFSUNUBO (phase 2 of MFSUTL and MFSTEST)......cccciieecieeeciieecciieeeieeeans 620
FLMTMSI INtErface tO SCRIPT/VS. .. e ettt s e e s s e e e e e e e e e e e e e e eeeeesesssssaaananas 621
FLMTPRE. ... ttteetteeett ettt ettt s et s bt e sttt e s bt e e s bae e sabte e s see e s beaesasaaessbaesssaeessaesssaesnssaesnssnesnnsnns 622
I S PRSPPI 623
FLMTXFER Workstation Transfer - Build translator.........ceivieiriiiiniieineeeiee e 625
S O I\ I o T 1= (=] 4 (o1 o [T USSRt 628
oA R o] o | A =] £ (=T [Y-SR 628
SEPAratioN Of FETEIENCES. .. .uiii ettt eeree e e e e eree e e e e eabte e e s sertaeeesenseeeeeennnes 629
Chapter 23. SCLM Variables and Metavariables.......o et 631
SCLM variable and metavariable deSCriptioNS.......cciccciiee i e e e earee e e e 631
SCLM variable and metavariable tables. ... 632
SCLM variable descriptions, variable names, and their SCLM functions.......cccccceeeecveeeeeecivenennn. 633
SCLM variables and their SCLM fUNCIIONS.....c.uiiiiiiiiiiieirieeeieesit st e s essareessaeee s 636
SCLM metavariable descriptions, metavariable names, and their SCLM functions................... 639
SCLM metavariable CONTENTS.....cii ittt ee e s e e s e e e s bee e sbeeesnees 639
Description Of SrOUP VANAbLeS.....ccuuii ittt ettt ettt sbe e e sbe e s sbee e s aeeesaneas 640

Appendix A. AcCesSibility....cccciiiiiieiiiiiiniiiieiiiiiieiiieiiesiiieniceciesicesiecscessscsncess. 643

ACCESSIDILITY FEATUIES....eiiii ittt tee e e e te e e e et te e e e eeataee e sessteeeeesanbeeaeeeanstaeeeennssenesanan 643
Consult asSISTIVE tECHNOLOZIES.uiiieiiiieitieeteeerte e see e s saae e s abe e ssaeeessabaesnaeaesnaeas 643
Keyboard navigation of the USEr iNtErfacCe.......ucuiiiiiiiiiecee e 643
Dotted decimal SYNTaX dia8ramiS. .c e ieeriieeecreeeciee st e st s st e s bt essate e s seeessaaeessstaessseesssseessssaesssseenan 643

[\ 0] o =Y - TR (Y- Y

Terms and conditions for product doCUMENTAtION........uiiii et e e 648
IBM ONliNg Privacy Stat@mMENt....cc i eieeeeccieee ettt e e ctree e e e e ree e e e e etee e e s seanteee e s ntaeeesesnsaneesennnseeaanan 649
oY Tor VA (o TRV [oI U] o] oo T {=To I A =T e KTV 7 U TSRS 649
MiniMUM SUPPOITEA NAIAWAIE....cccceiiiee ettt e e e rre e e s e b e e e e e e abeeeeeenseaeeeennseeneas 649
Programming Interface INformation......couciii ettt e s ae e s see e s 650
TrAAEMAIKS . ..te ittt ettt ettt ettt e ebte e s bt e e s bt e e s bt e e sbeeesabeeesbeeesasteesasaeesasaesssaesssaeesasaeesaseeesnseeesnn 650

Glossary Of SCLM TermsS....cccccieereieteceiectecatessecessesssessscsssessssassscassassacassassssasseces O51

T =) Y 1. 1"

Figures

1. SAMPLE SYNTAX IABIAM i utiiiiiieeeiieeectee et ecte e et e e ete e eeateeesatee e aeeeesteeessseesteessseessseeasseeassaeasseesnnseenns XXV
2. EXaMPLe Of SCLM HIBIArCRIES.uuviiieeiiieeeeeciieee ettt ettt e ee et e e e e s eree e e s e beee e e e baaeeeesnssaaeeeessaseeessnssenessanes 5
3. EXQmPLe Of SCLM HIBIarChi@S. .. uuiiiiiiiciieeciiee ettt ettt etee e rtee e e tee e e te e e stee e steeesabaeeensaeesnseeesnsaeesnsanans 6
4. Default (Primary) Project HIerarChy StrUCTUIE........oiiiueii ettt et e eetee et e e etee e e eree e ebaeeenneas 7
5. Alternate Project Hierarchy Structure with Primary Non-key Integration Group......ccccceeeecvveeccieeencveeenneenn. 7
6. Sample Hierarchy with AUthOriZation COUES.......uuiiiiiciiie ettt rre e e erre e e e e re e e e e araaeeeenannes 9
7. Valid Hierarchy with Unallocated Data Sets........cccuieeciieeiiiiecieeecee et see e e ree e ae e e e e e e naeean 15
8. Invalid Hierarchy for Intended OPeratioN......ccueeeeicciieeeeeiiieeeeeccrieeeeecire e e e eetreee e s arreeesenraeeeesnnssaseessnnsenes 16
9. Accounting File EXample (Part 1 0f 2).....occiii ittt ettt e e s re e s aae e s sbe e s aae e s aane s 19
10. Accounting File EXample (Part 2 Of 2)....uic ettt ste e steeteesa e sre e ssaesseessaeeaseesnaesnseennnenn 19
11. Audit Control Data Set EXample (Part L 0f 2)...cuue ettt etee e vee e e vee e e bae e saae e 21
12. Audit Control Data Set Example (Part 2 0F 2)......ccceee ettt et et e 21
13. SCLM Control Data Set EXAMPLE....cccciiiiiiecciie ettt eete e et e s te e et e e s abae e sseessnsee s nteesnnsesennseeans 22
14. Sample Alternate ProjeCt DefiNITiON........cccuiiei ettt e e e e e e e e e e e e e e arae e e s e nraeeeean 25
15. Example Project Definition (Part 1 0f 3)......ci ittt e ve e e s vee e ree s e bae e 30
16. Example Project Definition (Part 2 0f 3) ...ttt et e e e et e e e e e e areeeneaean 31
17. Example Project Definition (Part 3 0F 3) ...ttt e ree e e 32
18. Enterprise COBOL Language Definition Example (Part 1 0f 2).....ccccceeeieeceeneeceeceeeee e 37
19. Enterprise COBOL Language Definition Example (Part 2 0f 2).....coccvviiiviinieniiinnienieneeniese e see s 37
A O o 0 g o] oI S oY =Tt fl o 1T =T of 1 Y 2SS 40
21, EXample ProjeCt ArChITECIUIE.....ii ittt e ee e e e e s e e e be e e e bee e e baeeensaeeensaeesnnes 41
22. Change Code VerifiCation USEr EXit.....ccccviciiiieieeiiieeiiieeseieescieessseesseieeessseesssaeesssseessseessseessssesssnsesssssens 57
23. Promote User EXit (Part L OF 3)...ci ettt sttt ettt st be s s s sbeesnesmees 65

xi

xii

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Promote User EXit (Part 2 0F 3)..c ittt ettt ettt et s e e st be st s b e saeens 66
Promote USer EXit (Part 3 0 3)...ciiirerererterertestest ettt sttt ettt sae st st e st e b saesaesaesbesbeneeneas 67
JCL to Restore the Primary ACCOUNTING DAata Sel.....ciiiieiiiiieiiieieiee ettt see e iee s s aee s sie e s 70
SamPle ProjeCt AefiNITION......ii i e re e e re e e ree e s ree e s be e e s bee e ebae e sbeeeenres 73
COBOL IT with DB2 Preprocessor (Part 1 Of 2)......ccciiociiiieie ettt et e et e e e eenr e e e tee e raeenes 81
COBOL II with DB2 Preprocessor (Part 2 0f 2).......iccieceeeiieceeeieeeee ettt sttt e v e veesane e ve e e 82
SKELS Parser DefiNITION...cccuuiieeieeeeeee ettt sttt et b e st s bt e s e s b e smeesaneesneesaneenne 84
Parser for ISPF skeletons (Part 1 0f 8).....ccieiririririneriieriestesiesieseste sttt sttt sbe b 85
Parser for ISPF Skeletons (Part 2 0f 8)....ccei ittt ettt ettt st st e 86
Parser for ISPF skeletons (Part 3 0f 8).....ccieieiriririrerteieesesierieseste ettt neen 87
Parser for ISPF Skeletons (Part 4 0f 8)....ccei ettt ettt ettt st st et 88
Parser for ISPF skeletons (Part 5 0f 8).....ccieiririririrerisieesieiesieetes ettt 89
Parser for ISPF Skeletons (Part 6 0F 8)....cc.eiiiririeriiiereee ettt ettt st e 90
Parser for ISPF skeletons (Part 7 0f 8)..cc.ccic ettt bbbt aen 91
Parser for ISPF skeletons (Part 8 0f 8).....c.uiiirirrereiereeie ettt ettt sttt e 92
LISTINFO MOGULE.c..euviiiieriertentertest ettt sttt ettt ettt b bbb s bbb e st e st et e b et e b e nbenbensensensensensensenee 92
STATINFO MOGULE. ...ttt ettt sttt st e st e s e s st e st e e b e st e e beesaee e bt e smeeeareesneesaseenneanns 93
Sample Language Definition for Conditionally Saved COmMpPONENtS.......ccocvervieirieriieeneeniienrieenieesieenieens 93
Source member with includes in different inClude Sets.......cocieiiiiiieiiniieeee e 95
Language definition to support multiple include sets (Part L of 3)....cccevirceeninvinienieneerereeeseeseeeens 96
Language definition to support multiple include sets (Part 2 0f 3).....cccceeveeieerieecieree e 97
Language definition to support multiple include sets (Part 3 of 3)..c.cocvvirceninieninireeeneeeseeeeeene 98
Record Layout Used to Store Dynamic INCLUAES........uviiieciiiieiecciiee ettt ecttee e eecree e e e re e e e e vae e e e ennes 99
Finnoga 4 Language Definition (Part L 0f 2).......cccieiiiiieeeie ettt sae et e er e aaeeane s 109
Finnoga 4 Language Definition (Part 2 0F 2).....c.cccieiie ittt s 110

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

PaNda UnNiVerSal PrePrOCESSO . i iiieeieetiieeeeeiiieeeeeeittteeeeeesteeseessteeeesestasessesssssassesssesassensseessssssssnesnnns 112
Finnoga/PUPP Language Definition (Part L of 2).......cccieiiiceeeee ettt 114
Finnoga/PUPP Language Definition (Part 2 0f 2).....c.cccieeeecieeceeeesee ettt 115
Architecture Definition EXAMPLE....cu ittt ee e s ae e e ae e s e e e s re e e saeeesnaeeennes 115
JCL: EXECULE TEFBRILA......oceeeeeeee ettt ettt s e e e s e e s 117
SCLM: EXECULE TEFBRILA.... ettt ettt ettt ettt et sre e s s e be s sbesanesneens 117
JCL: EXECULE GAC.... ittt ettt ettt e e s e s e s me e e s me e e s e e e s men e s menesmenesanenes 117
SCLM Language Definition: EXECULE GAC......c.uiiiiieeiiieeiieeeireeecteeesteessteeesteessveessavaeesraeesssaessnsaesnnses 118
JCL: Conditional EXECULION...c.utiiiiitieee ettt st st sre e s e e b e s e e e neesmeeeaneas 118
SCLM Language Definition: Conditional EXECULION.......ccccieiiiieieieeeee ettt e evee e e 118
JCL: Complex Conditional EXECULION. ... iiiee ettt ettt e e e cree e e e e sbee e e s erre e e e e sensaeeeseennaeeeaeas 118
SCLM Language Definition: Complex Conditional EXECULION......cccervvierieriieineerieenienieeneente e e 118
JCL: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)......cccueeeciieeiiieecieeeceeeceee e 121
JCL: Invoke COBOL Preprocessor and Compiler (Part 2 0f 2)...cc.ecceeveeiieecieceeccieece e 122
SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 1 of 2).....ccccveecvvecuveneen. 123
SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 2 of 2).....ccccveeevveneenneen. 124
SAMPLE ProjeCt HIBIArCRY....uiiie et ctee e et ee e e e e saee e e e e nste e e e senssaaeesennseneessnnnes 138
Key and Non-Key Groups Within the Project HierarChy........cceeeceieeceeiccee et 139
SCLM Main Menu Panel (FLMDMN).....cocuiiiriirtenie ittt sie sttt ettt st et st e bt esae et sae e b et e sbeeaees 143
SCLM View - Entry Panel (FLMEB#HP)......ccccetiiririnieieienieeieniceitseesit st sae s e e e v 145
SCLM Edit - ENtry PAN@L (FLMEDHP).....ooiceieeeeie ettt eetee e ctee e e tee e e tee e eteesearaeeeabaeeensaeseasaaeensaeennnes 148
SCLM Edit Profile (FLMEINFO)Edit Profile PANEL.......ccceevuiriirierienieriereeiesceieseeses e see e seesae e 153
SCLM ULILIEIES (FLMUDUZEP).....tiiitieeieecteeeieectteete et esteestessaeestessveesseesseesssesseesseessseesseesnseensessnseensessneenn 155
SCLM Library Utility (FLMUSHP)......ccueieiirterterterentestentestesteste ettt sse st st sse st sbessessesaessessessensensensensenee 156
Member Selection LisSt (FLMUSLHEP).....cccoiiiitenie ettt sttt ettt st et sb st sae et st see s 159

xiii

xiv

74.

75.

76.

717.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Member Selection List with Hierarchy and Member Description View (FLMUSM#P)........cccccccuveennenn. 160
AccoUNting RECOIA (FLMUSAHP)......i ittt ettt ete e st e s ve e steesaeebaesaaeeabaesssesaseesssesnsaenseesnsaens 162
Accounting Record StatisticsS (FLMUSSHP).....cccviciiiieeceeceeeee ettt seeeste e e srae e vaeseeeaeas 164
Change Code List - Records That Can Be Deleted (FLMUSCHP)........ccoveeeeecieceeecieeceeere et 166
INCLUAE LiSt (FLMUSTHP).....ueieieiteeteiteetest ettt ettt st sae ettt sat e bt et e sbe et e sheebeeatesbeentesbesasesanans 167
User Data ENtries (FLMUSEHP)......cc.oiiiiierirenenieniententestest sttt see st saesee b b seesaesbesvesaesaesaesaesaes 168
Build Map ReCOIrd (FLMUSBZHP)......oi ettt ettt ee e e e te e e te e e ate e e ate e seate e senteeestaesneaesnneaesnnes 169
Build Map Contents (FLMUSBRP).......cciiiiieieeciecieeciee et et e teesteeeteseteesseesbeesseesseenseesaseenseesasesaseenseenn 170
Authorization Code Update (FLMUSUZP).........uii ettt et et e et e eeteeeesee e tee e saaesenseeenns 172
Where-used PAnel (FLMUSFHP).......ccci it et e cteete et e s cteestee e aeebaessaesbaesseesaseessessaseeseesssesnsennns 173
SCLM Not Promoted Member Update panel (FLMUSNHP)........coociieciiecceeeetee ettt ettt eaee e 174
SCLM Migration ULility (FLMUMEP)......ccceriririnenenieniteiesienesiesie st sae b sre bbb e saesaesae b sees 176
SCLM Database Contents Utility (FLMRCHP)......oocciieeieeeieeeete ettt et et e e ve e e re e e e vaeesbae e neeaan 178
SCLM Database Contents - Additional Selection Criteria (FLMRCA).....ccceceevtrvirirrerienenenereeeeeeeenenne 179
Database Contents Utility REPOI.. ... e e e erre e e s e aree e s e nre e e e e e beeeeeeas 181
SCLM Database Contents - Customization Parameters (FLMRCT)ccccevererereneneneneneneneneseneenees 182
Database Contents Utility TAIlored OULPUL.....cccccviiieicccrieeee ettt eecteee et e e e e e e e e e e e enneee s 184
Change Code REPOIt, PAZE 2.....uii ittt eetee ettt ees e e s e te e s steeseateessataessstaessstasensteesensaeensseeanns 185
Accounting Statistics REPOIt, PAZE 2....uuiiiiiiiiieieiieciee sttt sttt et e s ste e s rate e sate e s ssaeessabeesnssaasas 185
Yo UL oI I E T Y= (=T o o SR SRS 186
(011 Y U T =T o S 186
SCLM Architecture REPOIt (FLMRAHEP)....c..ui ettt ettt eeete s taesreeste e s aeebeesaaeebeessaesnsaenseas 187
Architecture report with cutoff of NONE (Part 1 0f 3)...cccciiieiieeeeeeeeeeee ettt e 189
Architecture report with cutoff of NONE (Part 2 0f 3)...ccceeciieciecieeeeeee ettt 190
Architecture report with cutoff of NONE (Part 3 0f 3)...cicciiieieeeeeeeee et 191

99. Architecture report with cutoff of LEC (Part 1 0f 2)...cccuei ittt e 192

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

1109.

120.

121.

122.

123.

Architecture report with cutoff of LEC (Part 2 0f 2)...cc.ecceiiciieiecieeie ettt 193
SCLM EXPOrt ULility (FLMDXEHP)....uiiiiecieeeieeieesee et et e steesteestessteesseesseessaesnseessaesssasseesnsesnsessssesnnes 194
EXPOrt REPOIT (PArt 1 OF 2)..iuiieiiecieeee ettt ettt ettt et e be e ae e s be e be e saveebaesaaeebaeeaneenns 196
EXPOrt REPOIt (PArt 2 0F 2) . .ueii ettt et e et e e et e e e be e e e bee e e bee e sbee e eabeeaenneas 197
SCLM IMPpOort ULility (FLMDXIHP) ... veeceeecieeeie et eceeeteeeteesreesteesaeeteesaaeevaessaesbeessaesaseesaesnseenseesssesnnes 198
IMPOrt REPOIt (PArt 1 OF 2) ...ttt et e etee e e etee e e ete e e e te e e e bee e e bae e enbeeesbeaesnsaeannnes 200
IMPOrt REPOIT (PArt 2 0 2)..iiuiieieeeiecieeete ettt ettt ettt e e be e s b e e be e baeeabe e baeeabeebaesaseenseennns 201
SCLM Audit and Version Utility (FLMVUSHP)......ooo ettt ettt e e vee e tee e tee e e aee e 202
SCLM Version Selection Panel (FLMVSLHP).....cciviririrenereneniesiesesesiesie sttt sie bbb bbb snens 203
Audit and Version View panel (ISREDDE2) - sample data with history......cccccecoeeeeeeeceicceeecieeenee 205
Audit and Version View panel (ISREDDE2) - sample data.......cccccoveeeeecieeiieciie et esvee v 206
SCLM Audit/Version Record Panel (FLMVBAHP) ..ottt eeeeeeevtteeeee et e e s e s s essssssseeseeseessssesnnns 206
SCLM Audit and Version Utility - Compare Panel (FLMVSCH#P)......cccccveevieeeeecieeeee e 208
SCLM Audit and Version Utility - External Compare Panel (FLMVSX#P).......cccoceeeiieecieecccieeeeree e, 209
SCLM Audit and Version Utility - Retrieve Panel (FLMVSRHP).......ccccvvvivirieniinieneerieneesieseeneseeneeens 210
SCLM Delete from Group Utility (FLMDDGHP)......cccuieeiiieeereeeeiieeciteeeeteeeeteeeereeesreeeereeeereeeeseeeeans 212
B =Y (ol T 0T o JE (=T o1 S 214
Package BackoUt—BacKUp PhasSe.......couciiiiiiiiiiiiieecite ettt ste et e st ssate e ssaee s ssaee e s e 216
Package BackOUt—RESTOrE PhaSe.....cuiiiciiiiciieciee ettt et sctre e stte e st e e s evee e s eateesvaeessnaessaeesans 218
SCLM Package FUNCctions Utility (FLMPFHP).......ccciiiiieieeiieeteeceesteseeseestessveesae e veesaeseeesneeseeens 219
SCLM Package List PANEL (FLMPFELHEP).......ccoieiciieeeeeieeeeete et eteereesieeeveesteesreeebeesaeebaessaesareensaennns 220
SCLM Package Member Details Panel (FLMPMLEP).......ccceeiireieiieireecieeseeseeesvee e sveesene e essaeeneeas 221
SCLM Unit of Work processing - Entry Panel (FLMUWHP).......cccoocveeieiieeree et eee e 223
SCLM Unit of Work Options Action Bar ChOICES......uiiicuiiie ettt e 224

XV

xvi

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

L A o g DN = R =] A nd =] 1) TP 225

SCLM Unit of Work List CommMands PaN€l.....cccciiicciiiicieiceeecteecte et et see s s vee e s vae e 226
UOW MEMDBET LIST PANELacciieeiiiiie ittt eette e s e ete e e s ettt e e e s et ae e e e e ensbaeesesanbaeee s e nseaeesennsnenens 227
WOrK ELE@MENT LISt PANEL..cuetiiiciiieeiieeeteeete ettt e e e rre e s tae e e saae e s rae e e saae s nseeestae e nsaesnnenas 228
SCLM Explorer panel (FLMUDEPQ).......cccuiiicieeecieeeecieeeeteeeeteeeeteeeeteesetaeeeabeeseabaeeeasaesenseeeenseesenseesnnses 229
SCLM Search Entry PAN@L (FLMUCHP)......ccuiieeccteeeie ettt ettt st este e veesteesae e ebeesaeesbeesbaesnaeesaesnsaens 231
SCLM Search strings panel (FLMDSSHP).....cccuiiiiecieeieeceeeie st ee e e seesteesreesee e reeseessseesnaesnseesseenn 233
SCLM Search member LSt PANEL...uii ittt et e e te e s ate e s aaee e ataeeeneaeenns 234
Example of an SCLM SEAICH FEPOIM....ii ittt e e e e e e e s e e e e e s e bt ee e e e eaneneeas 235
SCLM Build (FLMB#P)SCLM BUild ENtry Pan@Ll.....cccvereeriineerienienieneeneeseesreesieseesseseessesssessesssessesssenes 236
Build Report (Part 1 of 2)reportexamplesreportbuild...........ooccueeeeieeeiiiecceeee e 239
BUILA REPOIT (PArt 2 OF 2) . uuiiiiiciieceeeieeete ettt ettt et et e s te e be e s v e e be e save e baesabeebaessaesabaessaesnseensaeeanas 240
Build Information Reportinformationbuild repOort........cccuiie i 241
SCLM Promote (FLMP#P)panelspromotepromote functionpanel.........cceeceeeeeecieenieccieeseeceeeeeeeenenn 244
Promote REPOIt (PArt L Of 3) ..ttt ettt e et e et e e e ar e e e bt e e et e e e bt e e enae e e seeeenstaesnneas 247
Promote REPOIt (Part 2 0 3)..icuii ettt ettt be e s be e be e s v e ebeesaaeense e saeenraas 248
Promote REPOIt (PArt 3 0f 3) .ttt ettt e tee et e e e ae e e e aa e e e be e e eaae e e saeeenntaesnneas 249
SCLM Command Shell (FLMTSO)....ccueteieietetetentetetententestetentestesteteteseeste st estenteeebetentenseneeneensenee 250
Verify Batch Job Information (FLMDSUHP)......oei ittt ettt e et e eetee e e aae e e are e enaeeenneaan 251
OUtPUL DISPOSITION (FLMDEXT)..cctieiiieiiieiteeeteesteeeteesteeeteesteesseeeseessessseessesssseessesssseesseesssesseessessnsennes 252
SAMPLE ProjeCt HIEIarCRY .. .uiii ettt e e ee e e e ee e e s e be e e e s e e aaeeeeeensaneesenns 255
APPLCATION FLMOLAPL....oeieeeeeteeeete ettt ectte e et e e e ate e st e e e bbe e e sbee e staeessaeesssaeanssaesstaeanssassnnsaeannses 256
DLV (o] o] 4 =Y a1 A 03 X =SSR 260
Valid keywords for architecture member statemeENntS......cc.eeecvieeciiiciiiecceeece e 276
APPLCAtION FLMOLAPL. ...ttt ettt e e et e e e e tee e e s et teeeeeeastaeeeeenssaeeesenseaeseannsaseeessnsseneenannes 282

149. Architecture Members for Application Sample FLMO1APL (Part 1 0f 2)..ccceeeeieeeeciieeeeeeeee e 283

150. Architecture Members for Application Sample FLMOLAPL (Part 2 of 2)....cccevevveevenivenenieeneeienenns 284
1571, EXample of SYNChIONIZATION.ciii ettt e e e e et e e e e e s e e e e s enbeeeeeennssaeeeeensaneas 285
152. DB2CLIST €XamPLe fOr PLaNS...ccccviiicieeccite ettt etee e e tre e e te e e e bae e etae s enbae e eabaeesbaeesnsaeesnsneesnns 294
153. DB2CLIST eXample fOr PACKAZES.uvtiiiiiiriiteiiiteeiiee st e st e st e s st e ssieeessbeessaseesssbeesssseessaseessssaessnses 295
154. Defining DBRMTYPE in DB2CLIST translator.....cocuevcienieriieeneerieenieenieenieeseesieesieesseeeseeesseesseesasesnsens 295
155. DB2CLIST: flow of processing through the translators........ccecveeviieiiiieeniiececcecee e 296
156. Sample LEC architecture definition........cuciiecciiecieeccee ettt sre e st e s e e e e e raaeeens 297
157. Sample generic architecture definition for bind MemMber........covciiiiiiiinciiieee e 297
158. Sample HL architecture definition for overall compilation, link-edit and bind.........cccceeeviieviinennenns 297

159. Sample HL architecture definition for overall compilation, link-edit and bind (no generic
EoTgod o TR = Tor {0 Yo L=N T T AT o) S 297

160. Sample HL architecture definition for overall compilation, link-edit and bind (no generic

Architecture defiNitioN). ... ceee et b e b bbb s b s b sbe b e sbesbesbenbens 298
161. DB2CLIST SENEIIC EXAMPLE . utiiiiiieiciee ittt et et e s see e s etteeseaeeeserteesesteesssteesaseeesastaesaseeesanseesaseassans 299
162. Bind exec eXample (Part 1 OF 2) ...ttt ettt ete e st te e s e e e be e ae e s ae e baesaae e baenaaeens 300
163. Bind exec eXample (Part 2 0F 2). .. et ettt e e 301
164. Specifying Options in a Workstation Architecture Definition........ccocevveerieriinniienieenienieeeeseesieee 309
165. INCLUAING OULPULS @S INPULS..ceiiuiiiiiiieiiiierite sttt ssree st e s s e e s s e e e s bee s ssbee e s beeesabeeessbeeesnseessnnens 309
166. Multiple Workstation COMMANGS.......cccciiiicieeiiieecitee e e esree s eetee e ssree e ebeeeebeeessveeesbaeesabaeesseeesnseessnses 310
167. Workstation C Language Definition (Part L 0f 2).....cceeceeieecieecieceesee sttt see e e s 311
168. Workstation C Language Definition (Part 2 0f 2)......c.eccieeiieceeeeeeeeeee et saeeve e e 311
169. SCLM Not Promoted Member Update panel (FLMUSNHP).......c.cooociieeiiieeieeeee ettt e 316
170. SCLM Not Promoted Member Update panel (FLMUSNHP)........ccccecvuieiienieeieecee e eve et re e 320
171. Example of turning off SCLM DSN security for an SCLM project/alternate........cccecceevveeirveernceennnnen. 335
172. Example of turning off SCLM subproject security for an SCLM project/alternate......cccccceeveveercnenns 336
173. Example of turning off SCLM service security for an SCLM project/alternate.......ccccceceeereeeirceennnnen. 337

xviii

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

Example of setting uUp SCLM DSN SECUNITY...uiiiiiiiiiiieriiieiiieeerieeesiee st eesteesseeessareesseeesssseessaseessaseas 338

Example of setting up SCLM SUDProjECt SECUNTY...uuiiicieeiciie ettt s 340
SO I o [o o) 1 T o F= g T SR 346
Valid SUD-ProJECES PANEL..ccueiiiciiecee ettt e e e e s e e st e e e s beeesabee e s abaeeesbeaeenseeennses 346
SCLM Migration ULIlity @Ntry PAn@l...cci ettt ettt st sae e s ste e s sae e s ae e e naee s 346
SCLM Library Utility €Ntry PANEL..c.uuec ittt ettt e ste s e ste e s sate e s saae e e aae e s atae e naaesneeas 348
Member list panel showing associated SUDPIOJECES....cccciiiiciiiiriiieieieerte et 348
XFACILIT SECDBG ProOfile..ccuieceiieiieeerieeenieeieetest sttt sse et et s e s st st s s e s emeesreeneemeens 349
SCLM security debug iNfOrmMation......ciuieieciiieeeeeee ettt sre et see e s see e s see e s saeeesnaeeas 349
Additional SCLM security debug information......c..coccuieecciiecciecccee e 350
Sample Interactive Command Session (ISRTSO)......cccciiieiieeecieeeciee et e et etee e eaee e eree e eree e e aeeeeneeas 358
SCLM FLMCMD SEerviCeS MENU PANEL..uiiiciiiiciieieiieeeieeesieeeeieeesiteessteessstaesessaessssesssseeessseessssessssseens 361
BMNSG_ATAY CONEENTS...cveveueieteeiisieteestete et e et st te e st te et tese e st esesessesesassesesesassesasesesesassesesensssesanerens 364
R NI Al (o Lo YA (=T a L =TSRRI 368
ACCTINFO SEIVICE PANEL.utiiiiicciiiieeeciiee ettt e e et e e e eete e e e s etree e sesbtreessssseeeeesanseeeesesnseaseeessesnessnnnses 377
AUTHCODE SEIVICE PANEL ccuutiiiciieieiieeeite ettt ettt e et e et e e s e e e s tee e s stae e s bae s ebee e e baeesssaeessseesseaeessesennees 381
) D Y=Y Y ol= N o - L 1= F ST 385
ISPF INTEITACE PaAN@L..uciiiiiiiieieeeet ettt sttt ettt b e sre e s e b e sreeaees 388
DBUTIL SEIVICE PANEL..uuttiiiiieiiiei ettt e ettt e e et e e eectte e e e e etaee e s e e bbeeesessbaeeseenseseessansaesesesssenesssansenns 393
DELETE SEIVICE PANEL ..utiiiiiiiieiiieeciteectee et e et e et e e ste e e sae e e tee e s baeesabaeessbaeesasaeesnseesssseesanseaessseesnnsens 397
DELGROUP SEIVICE PANEL..uuiiiiiiiiiiieiieciieee e ecitte s eecttee e seettee e s e eaeeeeseabeeeesesnseaeesesnseaeesseasssnesssnnssneessnnns 400
DSALLOC SEIVICE PANEL.ciuriiiiiieieitieieiiee et e ettt e ettt e estreeestaeesstaeeesseessseesssseessseessseeassaeansseessseesssseenn 404
EDIT SEIVICE PANEL.utiiiiiiiiiiie ettt ettt e et e e e e ecee e e e e bee e e e e e tteeeeeesasaeeeseasstaseesenssanesssansasassenssseneesanes 407
EXPORT SEIVICE PANEL.cuutiiiiiieiciieicee ettt tte et e s e te e sete e e eatee s e te e ssateesenteeesateesneeesnneaesssessnsseesnsens 413
GETBLDMP SEIVICE PANELauiiiiiiiiiiieiieiiiiee ettt e e eette e e e ettt e e e e etee e e e sestaeeessssstseeeesnstaeeesenssenessesnseneessnsees 417

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

2009.

210.

211.

212.

213.

IMPORT SEIVICE PANEL..utiiiiiectiiie ettt ee e e e e e e etae e s s e e bte e e e e et beeeeesnbeeeeeeanstaeeessnsseeeeesssenes 423

LOCK SEIVICE PANEL c.utiiieiiiieiie ettt ettt e e tee e te e s e te e s s ateeesateeeesaeeesataeeesteessssesanssasssteesnssassnseaeansees 428
MIGRATE SEIVICE PANELautiiiiiiiiiieeieciiiee e e cctie e e e ectte e e e eettee e e esttaeessesteeeesessssaeesesnssaeesesassanessennseseesenssnens 432
NEXTGRP SEIVICE PANELariiicuiiiieiiiieiieieiteeeiteeeiteeesteestaeesssaeeessaeeessaeeessseeasseesssesessssaessssesanseesenssesennses 435
RO (Ol Y=Y Y o= o - L a1 USSR 441
RPTARCH SEIVICE PANEL ..utiiiiiiiieiie ittt ettt e e e e e s te e e s tee s e teeseateeesstaeeentaeesnteessssaeesnsaeannes 445
SAVE SEIVICE PANEL..uttiiiiiiciiiee ettt ettt e e e e e stee e e e e ettt e e e e e bteeeeeasssaseseeasstaeeeesnsteseseeansesesssnssseessanns 448
SCLMINFO SEIVICE PANEL.uuiiiiiiiecciie et ceieeeetee et e et esete e s s teessatee s atee e steessnseeessseeansseessssaesnsseesnsseeans 453
UNLOCK SEIVICE PANEL.uuiiiiiiiiiiieieciiee e cecitee e eecttee e s e e ctte e s e eabee e e e e baeaeeeeessaeeesesnstasessenseneesennssesssssnssenes 459
VERDEL SEIVICE PANELuutiiiciiiiiiiieieiee ettt e st e e te e st eeste e e sateesssbaessnsaeesssaeesssaeesssaeesssaesanseeennsees 461
VERINFO SEIVICE PANELacciiiiiiiiie ettt ettt et e s e e tte e e s e te e e e s et aae e s e sanbaeeesensaeeeesnnssanesesnssneas 465
VERRECOV SEIVICE PANEL ccuuriiiiiiiieiieeciiteeitteectt e ettt eesteeesiveeessaeessaaeessaseesssbaeesaseeanssaessnsassnsseesnsseesnnses 469
Sample language definition for ASSEMbBLET ...ttt 494
Sample language definition that calls @ PreproCESSOr.. ... iiiiiiieiciieecee e e eaee e 499
Hierarchy Example for Group DeSCIIPLION......uuiieeiccieee ettt e e e e ecvee e e e e be e e e e e e nsee e e e enaeeaee s 641

Xix

XX

Tables

1. The steps to generate a ProjeCt ENVIFONMENT.....ccciiiiiie ettt et ete e eeae e e eee e e ree e eereeeeereee e raeeennes 4
2. AUhOriZation COOE ALLOWANCES.ccuteitieriieieecte ettt st et e st et esee s bt e st e sabeesseesabe e seesase e bt e saeesbeesseesasens 10
3. Versioning Data St AttrDULES....cccuii et e e e st e et e e et e e st e e e tae e ntee e nreeaan 16
4. Data SOt ATIIDULES. ..eeteeeeeteee ettt ettt et et e st e bt e st st et e s bt e ne e st e e beesane e beesaeeereenne 17
5. Language Definitions SUupplied With SCLM.......coi ittt et te e e rte e s te e s te e seatae e 32
6. SCLM Macros for Language DefiNitioN.......icieieiieerieeeieceieesrie ettt e see e ee e s sase e e see e e saseessaseeesnns 35
7. Exits and EXit ROUtINE SPECITICAtIONS.......uiiiiiiectee et e e ee e e be e e et e e e bae e eaes 53
8. Initial and Save Change Code Exit ROUTINE Parameters.......cccvieviieieiieieiiieicieeeeieessieessieesseeesseeessseeesnes 55
9. USEI EXIT PAramMETEIS. ...cveieeriieieitteteeterteete sttt ettt et sa et st sb et e s bt e e e s st e e sae e bt et e sbe et e smeenbesmeenbesaees 58
10. User Exit Output Data SEt FOIMAL.......cciiiiiiiieiccciieeccccieee e ectee e e e crre e e e etre e e e esnreeeessasaeeesenraaeeeennsseeesanns 60
L1, USEI EXIT PAramEters....cocueeieieeieeieeiesiee sttt ettt ettt s e bt s bt et e s st e bt et e bt et e she e e e s st ebeemeenreenees 61
12, USEI EXIT PAramMETOrS. .. .ciiieeiieiieeieeste ettt ettt ste et st e s bt e sate e bt e saee e beesaeesabeesneesabeeseesasesseesneesnsens 63
13. User Exit Output Data SEt FOrMAt....cccuiicciiieiiieeiieeecie ettt eve e e site e e te e e saae e e aae e s eabee e aaeeesnseeennsaeennenas 64
14. DDname Substitution LiSt EXamMPLe.....uueei ittt ettt e rre e e e eetre e e e senrae e e e e saae e e e nnraeas 101
15. DDNAmMES @Nd KEYREFS.......iiiiiiiieieeet ettt ettt ettt et sttt sb e st sb e e e e she e e e saeeneemeens 110
16. DDnames Used by a HypothetiCal PreproCESSOr.. ... uiiieiiciieeeeeciteee ettt eerree e eeetre e e e e s tree e e e ennreeeean 112
17, Pre-defiNed @Ntities. .couii ettt sttt st e b e st sneens 241
18. Description of the Elements and Attributes in the Build information XML.........ccccoveveieiiiieeeccciieeeeennns 242
19. The arChiteCTUIre MEMDETIS.coouiiiiieeeteeee ettt ettt ettt b e et e bt e e s bt e eesmeenne 257
20. Uses Of ArChiteCtUIrE MEMDEIS.....cioiiiiieeeeteete ettt sttt bt e s sbe e saee s b e e sneesaee s 269
21. SCLM System Status INdeX Field Data........cccceeecieeiiiieeiieeeciee ettt e svee s vee e rae e vae e 272
22. The conditions under which SCLM builds and promotes by change code.......ccccccevvciiinveiinieeincieennnee. 273
23. SCLM Data Set Attributes fOr DB2 TYPES...uiiicieecieeeeiieeeciieeectteeeite e eiee e eteeeetee s svae s svaessaaeesabeesenseesnnses 293

xXXi

xxii

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Language definitionNs fOr DB2.....ccccuiiiiiieiiiieirieeieiee st eseieessreessteessteesssteesssteesesteessstaessnsessnsseessseessnnes 294
Examples of FLMLTWST combining COMPONENTS.......iiiciieeiiieeiieeeiieeeereeesieeesveeesveeesveeessseessnsasesnves 314
Summary of methods to secure an SCLM €nVIrONMENT.....ccccuiiiiieeciiee e e eeree e e e vee e e e evaee s 333
Subproject access for aCh SCLM fUNCLION......occuiiiiiiiecieecceeece et e ee e e e e 341
SCLM processes that Can be SECUME...... .. e e e rbree e s e rrae e e e snaaeeee s 344
e LT T - 10 o] o] (=TT SRR 363
ISPF variables USed iN SCLM SEIVICES....ccuiiruiriierieriteete ettt sttt st e sree st e st e saee s st e smeesreesneesaseenneenn 368
1] =Tt 017 PP 487
Valid IOTYPES fOr @aCh fUNCHION...ccuiiieeeeee et s 500
Valid DISP values for IOTYPE VAlUES.....cc.eecerirririeiieeenieeeset ettt st s s 501
Examples of include and nclude-set names derived from source statements........cccceccvveeiecciieeeeeennes 589
Examples of include and include-set names derived from source statements........c.ccceeceerierreeneennne. 592
Examples of dependancies derived from include dir€Ctives......ccveeieeciiieeeccciiiee e 596
Examples of include and include-set names derived from source statements........c.ccceeveerverneeneennne. 600
SCLM Variable Descriptions, Names, and Their SCLM FUNCLIONS........cceieecieieeieciiie e 633
SCLM Variables and Their SCLM FUNCHIONS....c..ticttrieriirerereeseetestee ettt s ee e 636
SCLM Metavariable Descriptions, Names, and Their SCLM FUNCEIONS.......cccoccvieeiiccviiee e 639
SCLM Metavariables and Their Corresponding Variables.........occueeeiieeeiieeciiiecciee e e 640
SCLM GroUP Variable LiSt...eececcuieeieeciieeeccciiee s ecitee e secttee e e e etee e e s ee e e e s s enae e e s seabaaeesennsaneeeesnsseeesssnnsensanan 640
SCLM Group Variable DESCHIPLION.....cii i eccieeecteeeeteeeeieesete e eete e e e rte e e s tee e steesebaeesasaeesnsaessnseessnsesesnsneannes 641

Content

Preface

This document provides reference and usage information, along with conceptual and functional
descriptions of the Software Configuration and Library Manager (SCLM). It also contains step-by-step
information for setting up and maintaining an SCLM project environment. It describes how to establish
and monitor a database and explains the library functions.

On May 15, 2018, IBM issued a statement of direction that the Software Configuration and Library
Management (SCLM) component of ISPF is functionally stabilized. While it will continue to be maintained
and supported, it won't be enhanced with new features in the future.

Who should use this

This is for application developers whose projects are controlled by SCLM. This is also for project managers
who use SCLM to manage the development process.

AlL SCLM users should read the first three chapters in Part 2, “Developer's Guide,” on page 135.

Content

This assumes that you are familiar with the operation of ISPF in the z/OS°® environment.

Part 1, “Project Manager's Guide,” on page 1 of this document is the Project Manager's Guide:

« Chapter 1, “Defining the project environment,” on page 3, describes how to generate a project
definition. It explains the steps that enable you to create the database that best meets the needs of
your project. It includes step-by-step instructions for setting up the SCLM sample project included with
the ISPF product. After completing the steps described here, you can experiment with basic SCLM
operations using the sample project hierarchy.

Chapter 2, “User exits,” on page 53, describes the customization of user exit points so that SCLM can
be integrated with other products. It lists the available exit routines and describes how you can
customize these for your users.

Chapter 3, “Additional project manager tasks,” on page 69, describes additional tasks that project
managers perform to maintain SCLM projects. It discusses backing up and recovering a project
database, using authorization codes to control SCLM operations, developing and maintaining projects
concurrently, and implementing verification and exit routines for SCLM projects.

Chapter 4, “Converting projects to SCLM,” on page 75, describes the steps required to convert existing
ISPF software development projects to SCLM.

Chapter 5, “Language definition considerations,” on page 79 describes setup operations you must
perform to create a language definition for SCLM to use. The subsection “Defining a new language to
SCLM” on page 100 describes the control structures used to manage SCLM functions and illustrates
how to define new languages. It also contains information on converting JCL decks to language
definitions.

Chapter 6, “Using SCLM and Tivoli Information Management for z/0S,” on page 125, illustrates the
interaction between SCLM and Information Manager through the use of a sample program.

Chapter 7, “Understanding and using the customizable parsers,” on page 129, describes the REXX
parsers supplied with SCLM and provides examples of how to customize them.

Part 2, “Developer's Guide,” on page 135 of this document is the Developer's Guide:

« Chapter 8, “The Software Configuration and Library Manager,” on page 137, provides information on the
SCLM project database and the terminology used. It describes the library structure and naming
conventions used when you define and maintain SCLM projects.

© Copyright IBM Corp. 1990, 2021 xxiii

Content

Chapter 9, “Using SCLM functions,” on page 141, describes how to use the ISPF dialog interface, select
SCLM functions to retrieve or process certain information, and generate reports on the information
stored in project databases. It also describes information stored in accounting, cross-reference, and
intermediate records for members in the project databases.

Chapter 10, “Development scenario,” on page 255, is a programmer scenario that describes the tasks
typically performed by SCLM users. It provides step-by-step instructions on how to use the basic SCLM
functions to control development projects.

Chapter 11, “Architecture definition,” on page 269, describes architecture configuration and
dependency control statements and their uses. It provides examples of each kind of architecture
member and describes the special command statements that the architecture members require. It also
provides an example of the format of each statement and lists any restrictions.

Part 3, “Advanced Topics,” on page 287 of this document contains Advanced Topics:

« Chapter 12, “Managing complex projects,” on page 289, describes techniques that aid in managing
complex configurations.

Chapter 13, “SCLM support for DB2,” on page 291, describes how to configure SCLM and DB2° to work
together.

Chapter 14, “SCLM support for workstation builds,” on page 303, describes how to set up and use SCLM
to do builds on the workstation.

Chapter 15, “Leaving a Member Behind on Promotion,” on page 315, describes how to leave a member
behind during promotion.

Chapter 16, “Member encoding and decoding,” on page 329, describes how to encode and decode
members.

Chapter 17, “SCLM security,” on page 333, describes how to secure your SCLM environment.

Part 4, “SCLM Reference,” on page 353 of this document is the SCLM Reference:

« Chapter 18, “Invoking the SCLM services,” on page 355 introduces services you can use to retrieve and
process information that is stored in SCLM project hierarchies. It describes the FLMCMD command
processor interface and FLMLNK subroutine call interface, and lists the general categories of
parameters, variables, and return codes relevant to invoking SCLM services. It also explains the notation
conventions used to document the services.

Chapter 19, “SCLM services,” on page 375 provides the command and call invocation formats, ISPF
interface panel, parameters, and return codes for each service.

Chapter 20, “Sample programs using SCLM services,” on page 473 provides sample programs in Pascal
and PL/I that allow you to invoke SCLM services.

Chapter 21, “SCLM macros,” on page 487 introduces and describes the macros that are used to create
project definitions for SCLM. It also explains the notation conventions used to document the macros.

Chapter 22, “SCLM translators,” on page 563 describes the translators delivered with SCLM. For each
translator, there is a brief description, a list of input parameters, and a list of return codes with the
appropriate user and project administrator responses.

Chapter 23, “SCLM Variables and Metavariables,” on page 631 lists the SCLM variables and identifies
each function with which they can be used.

The Glossary of SCLM Terms and the Index sections are available for your reference.

How to read the syntax diagrams

The syntactical structure of commands described in this document is shown by means of syntax
diagrams.

Figure 1 on page xxv shows a sample syntax diagram that includes the various notations used to indicate
such things as whether:

xxiv z/0S: z/0OS ISPF SCLM Guide and Reference

Content

« Anitemis a keyword or a variable.
- Anitem is required or optional.
- Achoice is available.

A default applies if you do not specify a value.

You can repeat an item.

»— COMMAND_NAME — required_variable L _J >
OPTIONAL_KEYWORD= variable

KEYWORD= default_choice {) l’
j_ j repeatable_item1
L KEYWORD= choice2 j—j
T choice3

required_choicel
l—{ fragment_name }—J optional_choicel required_choice2

A 4

A 4

optional_choice2 required_choice3

j f_ DEFAULT_KEYWORD T
repeatable_item2 >«
KEYword Q

:

fragment_name
r DEFAULT_KEYWORD T

>
»

M——>KEYWORD1 —

—— KEYWORD2 ——~

r KEYWORD3 — KEYWORD4 T
(variablel) »<

L variable2 — variable3 —J

(L variable4 -variable5])

OPTIONAL_KEYWORD1
OPTIONAL_KEYWORD2

OPTIONAL_KEYWORD3

Figure 1. Sample syntax diagram

Here are some tips for reading and understanding syntax diagrams:

Order of reading
Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The » symbol indicates the beginning of a statement.

The —* symbolindicates that a statement is continued on the next line.

Preface xxv

Content

The »—symbolindicates that a statement is continued from the previous line.

The -« symbol indicates the end of a statement.

Keywords
Keywords appear in uppercase letters.

»— COMMAND_NAME <«

Sometimes you only need to type the first few letters of a keyword, The required part of the keyword
appears in uppercase letters.

E DEFAULT_KEYWORD 3
KEYword
In this example, you could type "KEY", "KEYW", "KEYWOQ", "KEYWOR" or "KEYWORD".

The abbreviated or whole keyword you enter must be spelled exactly as shown.

Variables
Variables appear in lowercase letters. They represent user-supplied names or values.

»»— required_variable >«

Required items
Required items appear on the horizontal line (the main path).
»— COMMAND_NAME — required_variable —»<

Optional items
Optional items appear below the main path.

LOPTIONAL_KEYWORD= variable J

Choice of items
If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_choicel
required_choice2

required_choice3

If choosing one of the items is optional, the entire stack appears below the main path.

optional_choicel

optional_choice2

If a default value applies when you do not choose any of the items, the default value appears above
the main path.

DEFAULT_KEYWORD
[A

4

»d
>4

M——->KEYWORD1 —

——— KEYWORD2 ————

xxvi z/0S: z/0OS ISPF SCLM Guide and Reference

Content

Repeatable items
An arrow returning to the left above the main line indicates an item that can be repeated.

»L repeatable_item1 ln

If you need to specify a separator character (such as a comma) between repeatable items, the line
with the arrow returning to the left shows the separator character you must specify.

<

»L repeatable_item2 lb(

Fragments
Where it makes the syntax diagram easier to read, a section or fragment of the syntax is sometimes
shown separately.

E{ fragment_name D

fragment_name

DEFAULT_KEYWORD
[A

¥
}

M——->KEYWORD1 —

——— KEYWORD2 —————

Preface xxvii

Content

xxviii z/0S: z/OS ISPF SCLM Guide and Reference

z/0S information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/0S, see z/0S Information Roadmap.

To find the complete z/0S library, go to IBM Documentation (www.ibm.com/docs/en/zos).

© Copyright IBM Corp. 1990, 2021 XXiX

https://www.ibm.com/docs/en/zos

xxx z/0S: z/OS ISPF SCLM Guide and Reference

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxxi.

Submit your feedback by using the appropriate method for your type of comment or question:

Feedback on z/0S function

If your comment or question is about z/0S itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/0S product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

« Your name, company/university/institution name, and email address

« The following deliverable title and order number: z/OS ISPF SCLM Guide and Reference,
SC19-3625-50

« The section title of the specific information to which your comment relates
« The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem

If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

« Go to the IBM Support Portal (support.ibm.com).

« Contact your IBM service representative.
- Call IBM technical support.

© Copyright IBM Corp. 1990, 2021 xxxi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxxii z/OS: z/OS ISPF SCLM Guide and Reference

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/0S Version 2 Release 4 (V2R4)

The following changes are made for z/OS Version 2 Release 4 (V2R4).

Changed information
» “Using keywords” on page 233

« SCLM support for workstation builds
e “FLMCNTRL macro” on page 512

Summary of changes for z/0OS Version 2 Release 3 (V2R3)

The following changes are made for z/OS Version 2 Release 3 (V2R3).

There are maintenance changes to this document for z/OS V2R3 ISPF.

Summary of changes for z/0OS Version 2 Release 2 (V2R2)

The following changes are made for z/OS Version 2 Release 2 (V2R2).

Changed

« The amount of ABC data the system uses decreased. See the topic about ABC data optimization.

Deleted

No content was removed from this information.

© Copyright IBM Corp. 1990, 2021 xxxiii

xxxiv z/0S: z/OS ISPF SCLM Guide and Reference

What's in the library?

You can order the ISPF books using the numbers provided below.
Title
Order Number

z/0S ISPF Dialog Developer's Guide and Reference
SC19-3619-40

z/0S ISPF Dialog Tag Language Guide and Reference
SC19-3620-40

z/0S ISPF Edit and Edit Macros
SC19-3621-40

z/0S ISPF Messages and Codes
SC19-3622-40

z/0S ISPF Planning and Customizing
GC19-3623-40

z/0S ISPF Reference Summary
SC19-3624-40

z/0S ISPF Software Configuration and Library Manager Guide and Reference
SC19-3625-40

Z/0S ISPF Services Guide
SC19-3626-40

Z/0S ISPF User's Guide Vol I
SC19-3627-40

z/0S ISPF User's Guide Vol IT
SC19-3628-40

© Copyright IBM Corp. 1990, 2021

XXXV

xxxvi z/0S: z/OS ISPF SCLM Guide and Reference

Part 1. Project Manager's Guide

© Copyright IBM Corp. 1990, 2021

2 7z/0S: z/OS ISPF SCLM Guide and Reference

Running different versions of SCLM

Chapter 1. Defining the project environment

This chapter describes the tasks performed by project managers to set up and maintain an SCLM project
environment. The required steps are described in detail, with examples and recommended procedures
where applicable. After you understand the steps discussed in the first part of this chapter, you can
experiment with installing an actual project by completing the steps in “Project manager scenario” on
page 39. The data sets used in the scenario are included with the ISPF product. You can use ISPF Option
10.7 to create a small sample project.

If SCLM does not appear on any of your menu panels or on the Menu pull-down, enter TSO SCLM on any
ISPF command line. If SCLM is available to your terminal session, the SCLM Main Menu is displayed.

Running different versions of SCLM in multiple partitions

When you upgrade to a new version of SCLM (or apply a PTF), if you have two or more partitions running
different versions of SCLM accessing the same SCLM project, you must:

1. Ensure the SCLM project definition load modules are assembled using the earliest version of the SCLM
macros.

2. Upgrade the various partitions as required.

3. After all partitions have been upgraded to use the new version of SCLM, assemble the SCLM project
definition using the new SCLM macros.

Note:

1. You cannot utilise the features in a new version of SCLM (or PTF) until all the partitions accessing the
SCLM project have been upgraded to use the new version of SCLM.

2. In the past, if you had different partitions running different versions of SCLM, you may have
experienced problems when upgrading SCLM. To get around this, a process was developed to upgrade
an existing SCLM project definition to that of the version of SCLM you were running. However, if you
assembled the SCLM project definition using z/0OS 1.9 macros and then attempted to access them
using a z/OS 1.8 (or earlier) version of SCLM, SCLM generated the message "FLM81204 - - ERROR
INITIALIZING THE PROJECT DEFINITION",

Overview of project manager tasks

The primary function of the project manager is to create and manage the project environment. The SCLM
project environment consists of three types of information associated with an individual project:

« User Application Data (see “User application data” on page 137)
« Project Definition Data (see “Project definition data” on page 3)
« SCLM Control Data (see “Step 6: Allocate and create the control data sets” on page 17).

Project definition data

The project manager uses the SCLM project definition to generate and maintain the project environment.
A project definition defines the desired development environment to SCLM for an individual project. Using
the project definition, the product manager can define:

« The structure of the project hierarchy using groups and types

« The languages to use, such as COBOL and Pascal

« The rules to move data within the hierarchy (authorization codes)
« The SCLM options, such as audit and versioning

© Copyright IBM Corp. 1990, 2021 3

Generating a project environment

More than one project definition can be generated for a single project. The main project definition for an
SCLM project is the primary project definition. All other project definitions for the same project are
alternate project definitions. Alternate project definitions are usually used for performing specific tasks
that cannot or should not be done with the primary project definitions. Use of alternate project definitions,
if any are required, should be kept to a minimum.

Generating a project environment

To create the project environment, the project manager should be familiar with VSAM data sets and MVS™
high-level qualifiers. It is also helpful if the project manager understands Job Control Language (JCL).

The project manager should determine which compatible programs (such as DB2), if any, are to be used
with SCLM, then use the following steps to generate a project environment:

Table 1. The steps to generate a project environment

With standard SCLM With DB2

“Step 1: Determine the project's hierarchy” on “Step 1: Determine the project's hierarchy” on
page 4 page 292

“Step 2: Identify the types of data to support” on “Step 2: Identify the types of data to be

page 8 supported” on page 292

“Step 3: Establish authorization codes” on page “Step 3: Establish authorization codes” on page

8 293

“Step 4: Allocate the PROJDEFS data sets” on page | “Step 4: Allocate the PROJDEFS data sets” on page
11 293

“Step 5: Allocate the project partitioned data sets” | “Step 5: Allocate the project partitioned data sets”
on page 12 on page 293

“Step 6: Allocate and create the control data sets” | “Step 6: Allocate and create the control data sets”
on page 17 on page 293

“Step 7: Protect the project environment” on page | “Step 7: Protect the project environment” on page
23 293

“Step 8: Create the project definition” on page 23 | “Step 8: Create the project definition” on page 293

“Step 9: Assemble and link the project definition” | “Step 9: Assemble and link the project definition”
on page 38 on page 295

Step 1: Determine the project's hierarchy

As a project manager, you are responsible for generating and updating the hierarchy of the project to
accommodate project requirements. This step helps you plan the project hierarchy. When you have
completed this step, you should have a diagram of the hierarchy with all the groups labeled, as well as an
understanding of how each group is used.

It is usually easier to draw a diagram of your hierarchy, to help you visualize what the hierarchy looks like.
The following rules govern the creation of hierarchies:

« Each group can have no more than one parent.

Each group can have multiple groups promoting into it.
« There is no restriction on the total number of groups a hierarchy can have.

« A hierarchical view can contain no more than 123 groups. This is because MVS has a limit of 123 extents
for a concatenated partitioned data set.

« Each hierarchy has one root group, the topmost group.

It is possible to have more than one hierarchy defined for one project.

4 7/0S: z/0OS ISPF SCLM Guide and Reference

Step 1: Determine the project's hierarchy

« Defining no more than four layers makes it easier to use ISPF tools on the SCLM-controlled members.

The following two figures show two examples of hierarchies. These hierarchies are set up based on the
development phases potential projects might use. You can create hierarchies other than those presented
here. As a project evolves, the requirements that the project has on the hierarchy will change. With SCLM,
you can change the hierarchy to meet the needs of the project.

The reasoning behind the hierarchy shown in Figure 2 on page 5 follows:

« The development groups (USER1, USER2, and USER3) are where all modifications to SCLM-controlled
members are made.

« The INT group is for integrating (combining) all the SCLM-controlled members from the development
groups.

« The TEST group is the group where system or function testing of the application will take place.

« The RELEASE group will contain the final version of the application being developed. It is from this
group that the application could be put into production.

RELEASE

TEST

USERT |JSER2 USER3

Figure 2. Example of SCLM Hierarchies

The second hierarchy, shown in Figure 3 on page 6, is different. This hierarchy has two separate legs.
Each leg of the hierarchy contains a separate subsystem of the application being developed. The stage
groups (STAGEL and STAGE2) in each hierarchy leg are used for integrating and unit testing the
subsystems within each hierarchy leg. The SYSTEST group is used to combine the subsystems from both
legs of the hierarchy for delivery to a system test organization.

Chapter 1. Defining the project environment 5

Step 1: Determine the project's hierarchy

SYSTEST

STAGET STAGE2Z

USER? USER2 USER3 USER¢

Figure 3. Example of SCLM Hierarchies

Use the preceding rules and the requirements of your project to draw your hierarchy and label each group.

Primary non-key group testing techniques

You can use primary non-key groups as a technique to allow integration and testing of a software
application. The technique is useful where integration work can have far-reaching and undesirable
effects, for example, when a global change to an application affects the majority of developers. The
technique is also useful when schedule or other pressures are such that you must perform high-risk
integration of software. SCLM does not allow you to promote from a primary non-key group.

In a normal SCLM scenario, you promote code from individual development libraries to a common
integration group before performing integration testing. However, you can generate an alternate project
definition that deviates from the default project definition. The alternate project definition defines an
intermediate non-key group for integrating subsets of development groups. Define the non-key group so
that only key groups promote into the non-key group. Developers authorized to this intermediate group
can then promote code to it for unit and function testing. Testing takes place in this group before
promotion to the normal integration group. Because being at a non-key group does not cause members to
be purged from a key group during a promote, no members are removed from the default project
definition. In this way, you avoid potential integrity problems.

Using this technique, the activities of small groups of integrators do not affect the normal hierarchy until
their testing is complete. By switching to the alternate project definition, developers can easily test their
integration by promoting to the primary non-key group. When promoting to a non-key group, code still
exists in the normal hierarchy in the development libraries. SCLM promotion from the development
libraries, using the default project definition, would then incorporate the code into the normal integration
group. New code can go through an accurate configuration test before being applied to the normal
hierarchy. Code developed using this scenario is potentially more complete and accurate than code
developed in a normal scenario.

Use Figure 4 on page 7 and Figure 5 on page 7 to compare a default hierarchy structure with an
alternate hierarchy structure. Figure 4 on page 7 shows a default hierarchy structure for a project. You
can perform all normal development activities within the default hierarchy structure.

6 z/0S: z/OS ISPF SCLM Guide and Reference

Step 1: Determine the project's hierarchy

RELEASE Key

TEST Key
INT Key
USER1 Key USERZ2 Key USER3 Key

Figure 4. Default (Primary) Project Hierarchy Structure

Figure 5 on page 7 shows an alternate hierarchy structure with a primary non-key integration group for
the project shown in Figure 4 on page 7.

RELEASE Key

TEST Key
Primary
Non-Key DEPT I INT Key
USER1 Key USERZ2 Key USER3 Key

Figure 5. Alternate Project Hierarchy Structure with Primary Non-key Integration Group

In the example, the developers (USER1, USER2, USER3) can use the alternate project definition to
promote code into the primary non-key group. You cannot promote up from the primary non-key group,
but you can draw down from it.

Promotion to a non-key primary group does not cause deletion of the components from the respective
development libraries. Building in the primary non-key group allows the developers to integrate and test
pieces of code still under development. Code that is then complete can be promoted through the default

Chapter 1. Defining the project environment 7

Step 2: Identify the types of data to support

project definition from the development libraries into the normal integration group. The promotion to the
normal integration libraries causes the components to be deleted from the respective development
libraries, but not from the primary non-key group. Deletion from the primary non-key group must be done
manually using the SCLM Library Utility, the Delete from Group Utility or through SCLM services, such as
DELGROUP.

Step 2: Identify the types of data to support

This step identifies the types of data required by the applications under development for your project.
Some examples of the types of data used are source code, object modules, load modules, and source
listings. The list of types developed in this step is used in later steps.

SCLM supports the same kind of data supported by MVS partitioned data sets. The amount of data is also
a factor in determining the types of data needed. Different types (such as objects and listings) of data
should not reside in the same SCLM type. Determine the number of types you need based on the data you
want to maintain for the project. For example, if you want to maintain compiler listings, a listing type is
necessary. At a minimum, use four types to produce executable code:

« Source type for application source code

Object type for generated object code

Load type for generated load modules

Architecture type for architecture definition members.

Similar kinds of data can reside in separate types. For example, you can divide source code into
assembler source code and Pascal source code. To do this, identify an assembler type and a Pascal type.

Step 3: Establish authorization codes

Authorization codes control the movement of data within the hierarchy. The purpose of this step is to
assign authorization codes to the hierarchy. Authorization codes restrict the draw down and promotion of
members to certain groups within the hierarchy.

At least one authorization code must be defined for a project. If no authorization codes are defined, SCLM
will not permit members to be drawn down or promoted. Authorization codes work only on editable types
such as source, not on build outputs. Authorization codes are assigned to each group in the hierarchy.
Groups can have any number of authorization codes assigned to them. Members are assigned
authorization codes when they are registered with SCLM. Members can only exist in groups that have
been assigned the same authorization codes as the members.

It is not necessary to define more than one authorization code for the entire project. A single authorization
code allows each member under SCLM control to be drawn down to any development group and be
promoted to the top of the hierarchy. If tighter restrictions on the movement of your data are required for
your project, you must identify those situations and define additional authorization codes.

An example of when multiple authorization codes can be used is when an application has multiple
subsystems being developed in different legs of the hierarchy and you need to ensure that the members
of the two subsystems do not get mixed in the development groups in the hierarchy legs. Authorization
codes can be set up to prevent the members from one subsystem from being drawn down into the
development groups of the other subsystem. This requires at most two authorization codes. For additional
possible uses of authorization codes, see “Using authorization codes to control SCLM operations” on page
8.

Using the diagram that you drew for Step 1, examine the flow of members and determine if any
restrictions on the movement of members are required. Label each group with at least one authorization
code. Authorization codes can be up to 8 characters and cannot contain commas.

Using authorization codes to control SCLM operations

Authorization codes restrict promotions and draw downs on a member-by-member basis for source code
only. This section discusses some uses of authorization codes.

8 z/0S: z/OS ISPF SCLM Guide and Reference

Step 3: Establish authorization codes

First, some facts about authorization codes:

An authorization code is a character string up to 8 characters and cannot contain commas.
When you create the project definition, you assign zero or more authorization codes to each group.
Each member of every group within an SCLM-controlled project is assigned one authorization code.

In order to put a member into a group, the authorization code of that member must match one of the
authorization codes that have been assigned to the group.

When all the authorization codes are removed from a group, no members can be promoted into or out of
that group.

When you promote a member from one group to the next, the member retains its authorization code.
Thus, the group being promoted into and the group being promoted from must have a matching
authorization code. If, as a result of a promote, an older version of the module was replaced, the
authorization code assigned to that older version is not kept.

Figure 6 on page 9 shows a simple hierarchy with four groups: RELEASE, TEST, DEV1 and DEV2. The

group RELEASE has been assigned only one authorization code: DEV. Group TEST has two authorization
codes: DEV and TESTONLY. Three authorization codes (DEV, PROTO, and TESTONLY) have been assigned
to DEV1. Group DEV2 has DEV and LO as its authorization codes.

RELEASE DEV

TEST DEV, TESTONLY

DEV,PROTO,
DEV1 TESTONLY DEVZ DEV,LO

Figure 6. Sample Hierarchy with Authorization Codes

Code this information in the project definition as follows:

RELEASE FLMGROUP KEY=Y,AC=(DEV)

TEST FLMGROUP KEY=Y,AC=(DEV,TESTONLY) , PROMOTE=RELEASE
DEV1 FLMGROUP KEY=Y,AC=(DEV,TESTONLY,PROTO) ,PROMOTE=TEST
DEV2 FLMGROUP KEY=Y,AC=(DEV,L0O) ,PROMOTE=TEST

In Figure 6 on page 9, the following relationships exist:

A member in DEV1 with an authorization code of PROTO cannot be promoted because group TEST does
not have PROTO as an authorization code.

For the same reason, a member in DEV1 with an authorization code of TESTONLY can be promoted to
TEST, but cannot be promoted to RELEASE.

Similarly, a member in DEV1 or DEV2 with an authorization code of DEV can be promoted all the way up
to group RELEASE.

A member in DEV2 cannot have an authorization code of TESTONLY or PROTO; it must be either DEV or
LO.

A member in DEV2 with an authorization code of LO cannot be promoted because group TEST does not
have LO as an authorization code.

When you edit a member in a development group, SCLM looks at the authorization code you specified on
the edit panel and tells you the following information:

Chapter 1. Defining the project environment 9

Step 3: Establish authorization codes

- If that authorization code is not valid for that development group, you must enter an authorization code
that is assigned to that group. If you enter an invalid authorization code and then press the help key,
SCLM shows authorization codes for that group.

« If use of that authorization code prevents promotion of that member at some point in the group
hierarchy, SCLM gives you the name of the group into which promotion is not allowed.

- If use of that authorization code leads to a potential promotion conflict with another member of the
same name, SCLM does not allow the edit. An example of this problem follows.

SCLM allows you to have two members of the same name and type residing in two different
development groups (such as DEV1 and DEV2 in Figure 6 on page 9) under certain conditions. Each of
those members has an authorization code assigned to it. Those codes, along with the authorization
codes assigned to the higher groups in the hierarchy, determine how far up the hierarchy each of those
members can be promoted. If the two promotion paths do not intersect, SCLM lets you edit those
members in those groups. However, if there is at least one group through which both members can be
promoted, changes made to one member would be lost when the other member is promoted. In that
case, SCLM does not let you edit the members in those groups.

If a member exists in group DEV1, SCLM uses authorization codes to determine whether you can edit a
member with the same name and type in group DEV2:

Table 2. Authorization Code Allowances

Auth. Code for Auth. Code for

member in DEV1 member in DEV2 Allowed? Why?

DEV DEV No Both members can be promoted through
TEST.

DEV LO Yes Promotion paths do not intersect.

PROTO TESTONLY No TESTONLY is not a valid authorization
code for DEV2.

PROTO LO Yes Promotion paths do not intersect.

TESTONLY DEV No Both members can be promoted through
TEST.

TESTONLY LO Yes Promotion paths do not intersect.

Allowing parallel updates

You can use the information in the previous section to set up a project in which you can make
modifications to what you have in production (development) while being able to make quick fixes to
production modules (maintenance). The simple hierarchy is illustrated in the following example. An actual
hierarchy can contain many groups and layers.

PROD FIXED

DEV BETTER FIxX FIXED

Define the groups as follows:

PROD FLMGROUP KEY=Y,AC=(FIXED)
DEV FLMGROUP KEY=Y,AC=(BETTER) , PROMOTE=PROD
FIX FLMGROUP KEY=Y,AC=(FIXED) , PROMOTE=PROD

10 z/0S: z/OS ISPF SCLM Guide and Reference

Step 4: Allocate the PROJDEFS data sets

There are three groups: PROD is the production library, DEV is the development library, and FIX is the
maintenance library. In practice, there would be a much larger subhierarchy under both DEV and FIX in
order to allow for both multiple developers and for testing of applications before moving them to
production.

DEV, FIX, and PROD each have a single authorization code, BETTER, FIXED, and FIXED respectively, and
could have more. More importantly, no authorization code is assigned to both DEV and PROD. It is this
aspect of the project definition that prevents the promotion of any modules from group DEV into group
PROD. When the development code is ready to move into production, the authorization code BETTER
must be added to the valid authorization codes for the PROD group.

A programmer planning to make changes to a module for the next release of an application draws the
module down from PROD into DEV, specifying an authorization code of BETTER on the SCLM EDIT-ENTRY
PANEL. Changes are made and tested in DEV.

Suppose that while the module is being changed and tested in the DEV group, a user encounters a
problem with the application and another programmer determines that the fix requires a change to the
module that has been drawn down to DEV.

The programmer can draw down the module into FIX even though that same module has been drawn
down into DEV. This is possible because the promotion paths of the two modules do not intersect; the
module in DEV cannot be promoted into PROD because of authorization codes. Therefore, changes made
to one module do not overwrite changes made to the other copy.

When the fix has been made to the module in FIX and the application has been rebuilt at that group, the
user can run the application from group FIX until the fix has been verified and then promoted to PROD.

Before the fix is promoted, the changes must be incorporated into the copy of the modules in DEV. This is
a manual change made by the current owner of the modules in DEV with the assistance of the person who
made the changes in FIX.

Keep in mind that although authorization codes can be used to restrict promotion paths, they do not
provide security against modifications to SCLM-controlled data made outside of the SCLM environment.
You should use RACF® (or the functional equivalent) for that purpose.

Step 4: Allocate the PROJDEFS data sets

The PROJDEFS data sets are used to store the project definition data for an individual project. The
purpose of this step is to allocate the PROJDEFS data sets.

The PROJDEFS data sets are partitioned data sets with the following naming convention:

project_id.PROJDEFS.
SCLM requires that the load data set be named:

project_id.PROJDEFS.LOAD

When a user invokes SCLM for a specific project, SCLM uses the current assembled version of the project
definition located in the LOAD data set.

The data sets containing the project definition's source and object code are not required by SCLM to
follow the PROJDEFS naming convention, but it is recommended to make maintaining the project
definition easier. Therefore, following the naming convention would produce the following data sets:

project_id.PROJDEFS.SOURCE
project_id.PROJDEFS.0BJ

Allocate the PROJDEFS data sets using the attributes defined in Table 4 on page 17. The PROJDEFS data
sets should be protected from access by general users. Protecting the PROJDEFS data sets is discussed in
“Step 7: Protect the project environment” on page 23.

Chapter 1. Defining the project environment 11

Step 5: Allocate the project partitioned data sets

Step 5: Allocate the project partitioned data sets

The project partitioned data sets are used to store the user application data. These data sets are
organized into a hierarchy and controlled by the project definition. Allocate the project partitioned data
sets using either the ISPF Data Set Utility (option 3.2) or a JCL process. Use the information in this step to
determine the names, number, and physical characteristics of the project partitioned data sets.

Data set naming conventions

SCLM expects all the project partitioned data sets to use the default naming convention of
project.group.type. Because some projects cannot use the default naming convention, SCLM allows
the project manager to specify an alternate naming convention either for all the project partitioned data
sets or for the project partitioned data sets associated with individual groups in the hierarchy.

If your data already exists, the existing data sets can be used in conjunction with SCLM's flexible data set
naming capability. The next section provides additional information on using this capability.

Flexible naming of project partitioned data sets

With SCLM, product managers can use the SCLM-supplied default data set naming convention or a user-
defined naming convention. The default naming convention is PROJECT.GROUP.TYPE. If the SCLM default
naming convention is not used, the project manager's convention must use the MVS naming conventions.
For example, it is possible to use four or five qualifiers in the data set names instead of the three qualifiers
that are used by the SCLM naming convention. (The PROJDEFS data sets are exceptions; these data sets
must use the naming convention defined in “Step 4: Allocate the PROJDEFS data sets” on page 11.)

To define a naming convention other than SCLM's default naming convention, you must specify data set
names that correspond to specific groups or the entire project. While the names of the data sets used by
SCLM can use more than three qualifiers, the developers still see the PROJECT.GROUP.TYPE naming
convention on the SCLM dialog panels and service calls. The project definition creates a mapping between
the PROJECT.GROUP.TYPE name and the user-defined data set names associated with each group in the
hierarchy.

Note: This mapping is only maintained while users are executing SCLM functions. If ISPF utilities are used
on data controlled by SCLM, the users should know the mapping between the PROJECT.GROUP.TYPE
name and the fully qualified data set name.

The data set names are defined in the project definition with the FLMCNTRL and FLMALTC macros. Each
macro has a DSNAME parameter that allows the project manager to specify the data set names for the
entire project or for individual groups. The FLMCNTRL macro defines the data set names for the entire
project; the FLMALTC macro defines the data set names on a group-by-group basis. “FLMALTC macro” on
page 506 includes an example of how to set up the macros to use flexible naming of partitioned data sets.

The DSNAME parameters on both macros work the same way and can be used within the same project
definition. The value specified on the DSNAME parameter is a pattern for the data set name. This pattern
must meet MVS naming conventions and can contain the SCLM variables @@FLMPRJ, @@FLMGRP, and
@@FLMTYP. If DSNAME is not specified, SCLM uses the default naming convention of
PROJECT.GROUP.TYPE. The use of variable @@FLMTYP is required. SCLM verifies that the variable
@@FLMTYP is used on each DSNAME parameter when the project definition is loaded into memory. The
variable @@FLMGRP is very strongly recommended. The use of these variables minimizes the risk that
data set names associated with different groups are the same and prevents data from being overwritten.
The variable @@FLMPRJ is optional.

The SCLM variable @@FLMDSN is created from the value of the DSNAME parameter. Therefore, if the data
set name pattern is @@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP, the value of @@FLMDSN
will be @@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP.

The versioning partitioned data sets can also use a naming convention other than SCLM's default naming
convention. The VERPDS parameter on the FLMCNTRL and FLMALTC macros is used to specify the name
of the versioning partitioned data sets. SCLM uses a default of @@FLMDSN.VERSION for the names of the
versioning data sets. If a pattern other than the default is used, the variables @@FLMGRP and

12 z/0S: z/OS ISPF SCLM Guide and Reference

Step 5: Allocate the project partitioned data sets

@@FLMTYP must be part of the data set name pattern. Using two variables minimizes the risk that the
versioning data set names associated with different groups are the same, and prevents data from being
overwritten.

Q Attention:

SCLM does not guarantee the uniqueness of the data set names or check the validity of values
entered on the DSNAME parameter.

Number of data sets to allocate

Normally, a data set should be allocated for every possible PROJECT.GROUP.TYPE combination in the
hierarchy. However, if the intent is to develop code in several hierarchies that merge in one main
hierarchy, there might be no need to allocate some data sets. Allocating only the data sets that are
actually used saves time when creating the hierarchy and minimizes DASD use and catalog entries. See
Figure 7 on page 15 for an example of a hierarchy that does not have all data sets allocated.

Only those data sets actually used in the hierarchy must be physically allocated. SCLM functions will
execute successfully for hierarchies that contain unallocated data sets, as long as the unallocated data
sets are not used. If a data set is not allocated and SCLM attempts to use the data set, an error message is
issued.

Data sets can be added at any time. If you leave a data set unallocated and later find you need it, simply
allocate the data set then.

Determining when data set allocation is necessary

You can leave the data sets for the intermediate groups in your project unallocated until the first time they
are needed for a promote. You can also leave the data sets for types that will not be used at a particular
group unallocated. As an example, if a developer is responsible for source code but not panels, then you
can leave the data set for the type containing panels unallocated for that developer's group.

A data set need not be allocated if an EXTEND type is being used and the hierarchy is designed so that the
source code for the EXTEND type is always at a higher group.

For example, consider a project definition with the FLMTYPE macro written as follows:

CMNSRC FLMTYPE
BLDSRC FLMTYPE EXTEND=CMNSRC

In this situation, the type CMNSRC can contain members referenced by members in the BLDSRC type.
However, if the source code in CMNSRC will always be at a higher layer in the hierarchy (for example, IVV),
you do not need to allocate data sets for type CMNSRC below the IVV layer in the main hierarchy.

How SCLM functions use data sets

SCLM uses a data set when it expects that the data set already contains a member (for example, when
attempting to delete a member), or when the data set will contain a member (for example, when saving a
new member). The following list details how SCLM functions use a data set:

Build
Uses a data set if it contains a member that has a corresponding accounting record and that member
is being built or referenced by another member that is being built. Build also uses data sets for output
(those referenced by the LOAD, OBJ, or LIST architecture keywords, for example).

Promote
Uses a data set if it contains a member that has a corresponding accounting record and that member
is being promoted. If these data sets contain members that need to be promoted, they must be
present in the current group and in the group being promoted to; otherwise, an error message is
issued. If a promotion occurs from a non-key group to a key group, the corresponding data sets at the
previous key group will also be used.

Delete
Uses a data set when deleting a member.

Chapter 1. Defining the project environment 13

Step 5: Allocate the project partitioned data sets

Delete from Group
Uses a data set when deleting a member.
Library Utility
Uses a data set when deleting a member or when Edit, View or Build are invoked.
Import
Uses a data set when VSAM records are being imported into the hierarchy. The member imported
must exist somewhere in the hierarchy view for the group being imported into.
Edit
Uses a data set when storing or retrieving a member.
View
Uses a data set when retrieving a member.
Migrate
Uses a data set to retrieve information about a member that is being migrated into the SCLM
hierarchy.

Parse
Uses a data set when parsing a member.

Package Backout
The package details file contains an entry for each package, listing the members in that package. This
is built by Promote and used by Package Backout.

Manipulating VSAM records for unallocated data sets

A build map can be created for a member that is higher in the hierarchy but for which there is no source
data set allocated for the group where the build is occurring. If you delete a data set, the corresponding
accounting records and build maps can still exist in the VSAM databases.

Using the following utilities and services, you can browse or delete VSAM records that correspond to an
unallocated data set.
Library Utility

Browse and delete accounting records and build maps that correspond to an unallocated data set.

Delete
Delete accounting records and build maps that correspond to an unallocated data set.

Delete from Group
Delete accounting records and build maps that correspond to an unallocated data set.

Examples of hierarchies with unallocated data sets

A valid hierarchy that contains unallocated data sets is shown in Figure 7 on page 15. Member B
INCLUDES member C. A build of member B from group USR1 will succeed, although a data set was not
allocated for Cmnsrc at the INT group. The build will locate and use member C from the IVV group.

14 z/0S: z/OS ISPF SCLM Guide and Reference

Step 5: Allocate the project partitioned data sets

Group Group.Type Allocation
REL.Bldsrc
REL REL.Cmnsrc
REL.Prmsrc
WV Bldsrc
Y W Prmsrc
MWM.Crnnsrc [containg member C)
CMMNREL.Crminsrc
INT.Bidsrc .
INT INTBrrsic CMNREL (comtains
' member C)
— J‘ CMMINT CMNIT.Crmnsrc
USR1 USR2
USRT. USR2, CMNUSR CMMNUSR.Crminsrc
Bldsrc Prmsnc
[comtains
member &)

Figure 7. Valid Hierarchy with Unallocated Data Sets

A hierarchy that is not valid for the intended operation is shown in Figure 8 on page 16. A promote of
member B from the IVV group, which INCLUDES member C, will fail, because promote will attempt to
copy member C in IVV.Cmnsrc to REL.Cmnsrc.

Chapter 1. Defining the project environment 15

Step 5: Allocate the project partitioned data sets

Group

Group. Type Allocation

REL

REL.Bldsrz
REL.Prmsrc

WMV Bldsre (contains member B)
IV Prrnsrc
WV Cminsrc {contains member C)

INT

LISR1

USR1.
Bldsrc

INT.Bldsrc
INT.Prmsrc

UsR2

USR2,
Prmsrc

Figure 8. Invalid Hierarchy for Intended Operation

Versioning partitioned data sets

If the versioning capability is going to be used, at least one versioning partitioned data set must be
allocated. If you intend to use the VERCOUNT parameter on the FLMCNTRL macro to specify that two or
more versions be maintained, you must specify at least one versioning partitioned data set for each group
to be versioned. Otherwise, errors can occur during version retrieval. You can also choose to have a

CMNREL

CMNINT

CMMUSRH

CMMREL. Crmnsrc

CMMITCmnsrc

CMMUSR.Cminsrc

versioning partitioned data set associated with each 'group.type' to be versioned.

Table 3 on page 16 shows the attributes required for the versioning partitioned data set. All attributes

must be coded as shown, with the exception of LRECL, which defines the minimum LRECL allocation
required for versioning. The LRECL value must be at least 259 and must be 4 bytes more than the LRECL

of the largest source data set to be versioned.

Table 3. Versioning Data Set Attributes

Attribute Description

LRECL = The larger of 259 and the source data set's LRECL + 4

RECFM = Variable Blocked (VB)

BLKSIZE = The largest of the LRECL + 4 Bytes, the source data set's BLKSIZE, and the

optimal block size for your system.

The 4 bytes in the block size calculation are for MVS control information, specifically for the blocklength
field. For example, with a blocking factor of 10 the block size would be calculated as follows:

(259 x 10) + 4 = 2594

16 z/0S: z/OS ISPF SCLM Guide and Reference

Step 6: Allocate and create the control data sets

Project partitioned data sets

This section provides guidance on what data set attributes should be used for the project partitioned data
sets. SCLM does not restrict the format of a data set.

Note: Data sets of the same type must be allocated with the same attributes.

Table 4 on page 17 lists recommended data set attributes for some typical types. For best performance,
specify blocksize=0 to use the system-determined block size. Load module data sets should be allocated
with a block size of 6144 or greater.

Table 4. Data Set Attributes

Type RECFM LRECL
Source FB 80
Object FB 80
Load U 0
Listings VB 137
Link-edit Maps FBA 121
Architecture definitions FB 80
Other Text FB 80

Space considerations

SCLM has no special considerations that require the allocation of additional space in the project
partitioned data sets. Allocate the size of the project partitioned data sets according to the amount of data
that will be stored in them.

Step 6: Allocate and create the control data sets

Control data sets are used to track and control application programs within the hierarchy. SCLM stores
accounting and audit information in VSAM data sets whose names are defined in the project definition.
VSAM data sets consist of VSAM clusters. A VSAM cluster is a named structure consisting of a group of
related components. While it is not required that the first qualifier of VSAM data sets match the project
name, it makes project maintenance easier. There are seven types of VSAM data sets that can be
associated with a project.

Primary Accounting
The accounting data set contains information about the software components in the project including
statistics, dependency information and build maps (information about the last build of the member).
At least one accounting data set is required for a project.

Secondary Accounting
The secondary accounting data set is a backup of the information in the accounting data set.

Export Accounting
The export accounting data set contains accounting information that has been exported from the
accounting data set.

Primary Audit Control
The audit control data set contains audit information about changes to the software components in
the project for groups that have auditing enabled.

Secondary Audit Control
The secondary audit control data set is a backup of the information in the audit control data set.

Cross-dependency data set
The Cross-dependency data set contains information used by the Where-used function.

Chapter 1. Defining the project environment 17

Step 6: Allocate and create the control data sets

Control
The control data set contains information about SCLM administrators, member locking, and the
backup of unpromoted members.

Most projects start out with one VSAM data set, the primary accounting data set. Additional data sets can
be added as the project evolves and more advanced SCLM capabilities are needed. Additional VSAM data
sets are required for Import, Export, Auditing, automatic backup of accounting data and multiple control
data set support. In some cases, it is desirable to use multiple VSAM data sets instead of one or two. If
this is the case, see “Splitting project VSAM data sets” on page 69 for additional information.

SCLM uses VSAM Record Level Sharing (RLS) to support sharing the VSAM data sets across systems in a
sysplex environment. This support requires:

The Coupling Facility

a VSAM cluster allocated with the proper characteristics for VSAM RLS
VSAMRLS=YES specified on the FLMCNTRL macro in the SCLM project definition.
« Share options specified as 3,3 (recommended) on the VSAM file allocation.

See z/0S DFSMStvs Planning and Operating Guide for information about the hardware and software
requirements to support VSAM RLS.

The VSAM data sets cannot be shared between systems in a sysplex under any other condition. Accessing
any of the VSAM data sets from multiple systems when VSAM RLS is not available can result in the
corruption of data, system errors, or other integrity problems. To avoid these problems, the project
manager must allocate VSAM data sets so that they cannot be accessed from multiple systems. What this
means is you should ensure that the VSAM data sets are allocated on DASD, or catalogs, not available to
other systems in the sysplex.

Except when using the RLS, the share options required on the VSAM file allocations are 4,3. This means
that the data set can be fully shared by any number of users in a single system, and VSAM refreshes the
data and index components buffer pools for direct processing, to guarantee the coherency of the data in
the buffer pool. Coherency, in this case, means that SCLM gets the most updated contents of the
requested record.

All VSAM data sets should be REPROed periodically using the IDCAMS reproduction utility. This will
reduce fragmentation and optimize the performance of your VSAM data sets.

Create the accounting data sets

The accounting data sets contain information about the application programs in the hierarchy, including
statistics, dependency information, and build maps. SCLM functions use the accounting information to
control and track members in the project partitioned data sets. Each project must have at least one
primary accounting data set.

An optional secondary accounting data set can be created. The secondary accounting data set is a backup
for the primary accounting data set. It allows for the restoration of accounting information if the primary
data set becomes corrupted, for example due to a disk failure. This data set name must be unique. The
secondary accounting data set should be stored on a different volume than the primary accounting data
set. If a secondary data set is used, the performance of SCLM will be degraded, because updates are
made to both the primary and secondary data sets. The information in both data sets should be compared
periodically to ensure the integrity of the accounting information.

Both the primary and secondary accounting data sets are created the same way. Each accounting data set
for the project must be a VSAM cluster. Use the IDCAMS utility to define accounting data sets. If
accounting information for different groups is to be kept in separate accounting data sets, additional
accounting data sets must be created. An example of the JCL used to define an accounting data set
follows:

Note: This example is called FLMO2ACT and is in the data set ISP.SISPSAMP that is included with ISPF.
ISP.SISPSAMP also contains a sample for the allocation of the data set for Record Level Sharing. It is
called FLMO2RLS.

18 z/0S: z/OS ISPF SCLM Guide and Reference

Step 6: Allocate and create the control data sets

//jobname JOB (wkpkg,dpt,bin), 'name’

//* code additional JOBCARD statements here
//***
//*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM

//* ACCOUNTING FILE FOR A GIVEN PROJECT.

//* THE HIGH-LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM USER CATALOG
//* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

//*

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

//* AND IT NEEDS TO BE DELETED:

//* DELETE 'project.account.file' CLUSTER

//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
//* DEFINE CLUSTER LINE OF JCL.

//* 2) CHANGE ALL project.account.file TO THE DESIRED FILE NAME.
//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC

//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
//* IDCAMS DEFINE STEPS ARE REQUIRED.

//* ACCOUNTING DATASET NAMES ARE USUALLY CHOSEN IN THE FOLLOWING
//* MANNER - "PROJECT.ACCOUNT.FILE" (WHICH IS THE DEFAULT
//* USED IN THE PROJECT DEFINITION IF NONE IS SPECIFIED).

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)
//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

//*
//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.
VA
[[FxF Ik d kg ok kkokkdokdhokkhokkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kK
//STEP1 EXEC PGM=IDCAMS
//*
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *
DEFINE CLUSTER +
(NAME ('project.account.file') +
CYLINDERS(4 1) +
VOLUMES (VVVVVV) +
KEYS(26 0) +
RECORDSIZE (264 32000) +
SHAREOPTIONS(4,3) +
SPEED +
SPANNED +
UNIQUE) +
INDEX(NAME ('project.account.file.INDEX') -
) +
DATA(NAME ('project.account.file.DATA') -
CISz(2048) +
FREESPACE (50 50) +
)
/*

Figure 9. Accounting File Example (Part 1 of 2)

J R S e e o
/1%

//* INITIALIZE THE ACCOUNTING FILE

/1%

A R R R S S S S S e e
//STEP2 EXEC PGM=IDCAMS

//INPUT DD *

/*
//OUTPUT DD DSN=project.account.file, DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*

[1*
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

SCLM ACCOUNTING FILE INITIALIZATION RECORD

Figure 10. Accounting File Example (Part 2 of 2)

Chapter 1. Defining the project environment 19

Step 6: Allocate and create the control data sets

Space considerations for the accounting data sets

Each accounting data set requires approximately three cylinders of 3390 DASD for every 1000 partitioned
data set members that SCLM controls. The space required varies depending on how much information
SCLM will control. If additional space in the data set is desired, modify the space parameter (shown as
CYLINDERS in the example JCL).

Create the export data sets
The export control data sets are optional unless the export and import functions are used.
Before using the EXPORT service, you must allocate and define an export accounting data set.
To prepare for the export operation:

1. Define the export accounting data sets to the project using the FLMCNTRL and FLMALTC macros. Do
not use data set names that have already been specified for any ACCT or ACCT2 parameters in the
FLMCNTRL and FLMALTC macros.

Note: SCLM variables, including @@FLMPRJ, @@FLMGRP, and @@FLMUID, can be used when you
specify the name of the accounting VSAM data sets.

2. Use the EXPACCT parameter on the FLMCNTRL and FLMALTC macros to specify the name of the export
accounting data sets. This example illustrates how to use this parameter:

FLMCNTRL ACCT=SCLM.ACCOUNT.DATABASE, ©
EXPACCT=SCLM.EXPORT.ACCOUNT .DATABASE

SAMPLE FLMALTC ACCT=SCLM.ACCOUNT.SAMPLE, ©
EXPACCT=SCLM.EXPORT.ACCOUNT.SAMPLE

3. VSAM attributes should match those used for the Accounting files, except for the SHAREOPTIONS,
which must be SHAREOPTIONS(2,3).

Create the audit control data sets

The audit control data sets contain information about changes to SCLM-controlled members that are
located in groups being audited. The audit control data sets are only required if the audit function is used.
You must create the audit control data sets before the audit function is enabled. If auditing is used, each
project must have at least one primary audit control data set.

You can create an optional secondary audit control data set. The secondary audit control data setis a
backup for the primary audit control data set. It allows you to restore audit control information if the
primary audit control data set is corrupted. Choose a unique name for this data set and put it on a
different volume than the primary audit control data set. If a secondary data set is used, SCLM's
performance will be degraded because updates are made to both the primary and secondary audit control
data sets. The information in both data sets should be compared periodically to ensure the integrity of the
audit control information.

Use the IDCAMS utility to define audit control data sets. Each audit control data set for the project must
be a VSAM cluster. If audit control information for different groups will be kept in separate audit control
data sets, you must create additional audit control data sets. The following JCL example defines audit
control data sets.

Note: This example JCL is called FLMO2VER and is in data set ISP.SISPSAMP that is included with SCLM.

20 z/0S: z/OS ISPF SCLM Guide and Reference

Step 6: Allocate and create the control data sets

//jobname JOB (wkpkg,dpt,bin), 'name’

//* code additional JOBCARD statements here
//***
//*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE

//* AUDIT CONTROL DATA SET FOR A GIVEN PROJECT.

//* THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM CATALOG

//* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

//*

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

//* AND IT NEEDS TO BE DELETED:

//* DELETE 'project.version.file' CLUSTER

//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
//* DEFINE CLUSTER LINE OF JCL.

//* 2) CHANGE ALL project.version.file TO THE DESIRED FILE NAME.
//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC

//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
//* IDCAMS DEFINE STEPS ARE REQUIRED.

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)

//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

/1%

//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.

/1%

[R AR AR AR AR AR A

Figure 11. Audit Control Data Set Example (Part 1 of 2)

//STEP1 EXEC PGM=IDCAMS

[/

//SYSPRINT DD SYSOUT=H
//*

//SYSIN DD *

DEFINE CLUSTER +
(NAME('project.version.file') +
CYLINDERS(4 1) +
VOLUMES (VVVVVV) +
KEYS(40 0) +
RECORDSIZE (264 32000) +
SHAREOPTIONS(4,3) +
SPEED +
SPANNED +
UNIQUE) +
INDEX(NAME ('project.version.file.INDEX') -

+

DATA(NAME ('project.version.file.DATA') -
CISz(2048) +
FREESPACE (50 50) +

//* INITIALIZE THE AUDIT CONTROL FILE
//*
[] *Fxkdxkkdkok K kokkkkok Kk okkkk ok kokkkk ok ok ok ok kk ok ok ok ok kk ok ok ok ok kk ok Kk ok ok k ok Kk ok ok k ok Kk k ok
//STEP2 EXEC PGM=IDCAMS
//INPUT DD =
SCLM AUDIT CONTROL FILE INITIALIZATION RECORD

/*
//OUTPUT DD DSN=project.version.file, DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*

/1%
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 12. Audit Control Data Set Example (Part 2 of 2)

Space considerations for the audit data sets

Each audit data set requires approximately one cylinder of 3390 DASD for every 100 partitioned data set
members that SCLM controls. The space required varies depending on how much information SCLM will

Chapter 1. Defining the project environment 21

Step 6: Allocate and create the control data sets

control. If you require additional space in the data set, modify the space parameter (shown as CYLINDERS
in the example JCL).

Create the Cross-dependency data set

The Cross-dependency data set is optional. It is only required if the Where-used function is to be used.
Each project must have at least one cross-dependency data set for the Where-used function to be
enabled. The VSAM attributes and space parameters should be the same as those used to define the
accounting data set. Sample JCL for allocating and initialising the Cross-dependency data set can be
found in member FLMO2XDP of the ISP.SISPSAMP install library.

Create the SCLM control data set

The SCLM VSAM control data set is optional. It contains control information such as the SCLM
administrators that have been defined to the SCLM project.

Use the IDCAMS utility to define the control data set. The control data set for the project must be a VSAM
cluster. The JCL example shownhere defines the control data set.

Note: This example JCL is called FLMO2CNT. It is stored in the ISPF sample library ISP.SISPSAMP.

//jobname JOB (wkpkg,dpt,bin), 'name’

//* code additional JOBCARD statements here
//***
//*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE

//* SCLM CONTROL DATA SET FOR A GIVEN PROJECT.

//* THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM CATALOG

//* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

//*

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

//* AND IT NEEDS TO BE DELETED:

//* DELETE 'project.control.file' CLUSTER

//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
//* DEFINE CLUSTER LINE OF JCL.

//* 2) CHANGE ALL project.control.file TO THE DESIRED FILE NAME.
//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL MACRO

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)

//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

/1%

//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.

/1%

[AR AR A AR AR

//STEP1 EXEC PGM=IDCAMS
A
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *
DEFINE CLUSTER +
(NAME ('project.control.file') +
CYLINDERS(4 1) +
VOLUMES (VVVVVV) +
KEYS(26 0) +
RECORDSIZE (264 32000) +
SHAREOPTIONS (4,3) +
SPEED +
SPANNED +
UNIQUE) +
INDEX(NAME ('project.control.file.INDEX') -
) +
DATA(NAME ('project.control.file.DATA') -
CISz(2048) +
FREESPACE (50 50) +

/1%
)CM 5665-402 (C) COPYRIGHT IBM CORP 2005

Figure 13. SCLM Control Data Set Example

22 z/0S: z/OS ISPF SCLM Guide and Reference

Step 7: Protect the project environment

Step 7: Protect the project environment

SCLM provides a controlled environment to maintain and track all software components. However, SCLM
is not a security system. You must rely on RACF or an equivalent security system to provide complete
environment security. Consider limiting authority to data sets in the hierarchy above the development
layer.

The following sections describe the security requirements for the different types of data in the SCLM
environment. Use this information to set up the security for the project environment. When this step is
complete, the security requirements for the project environment are complete.

PROJDEFS data sets

The project definition LOAD data set should be restricted so that only the project manager has UPDATE
authority to it. All other developers need READ access to this data set. Developers have no need to update
the remaining PROJDEFS data sets and should not have UPDATE access to those data sets. READ access
can be given to the other PROJDEFS data sets if this is reasonable for the project.

Project partitioned data sets

« Each developer needs READ authority to all the project partitioned data sets.

« Each developer needs UPDATE authority to the development groups that the individual uses to change
SCLM-controlled members. UPDATE authority is also required for any groups the developer is allowed to
promote into.

« If the SCLM versioning capability is used, each developer needs UPDATE authority to the versioning
partitioned data sets.

« If the import/export capability is enabled, each developer needs UPDATE authority to the export data
sets.

« We suggest that the project manager have ALTER authority to all the project partitioned data sets.

Control data sets
« Each developer in the project needs UPDATE authority to the control data sets that are updated by the
developers.

« Each developer needs READ access to the primary and secondary (if used) accounting data sets for all
groups in the hierarchy. This authorization is required for SCLM to perform its verification.

« If cross-reference data sets are used in the project, each developer needs READ access to the cross-
reference data sets for all groups.

« If the auditing capability is used, each developer needs UPDATE authority to the audit control data sets.

For more information about RACF, refer to z/0S Security Server RACF Command Language Reference.

Step 8: Create the project definition

The project definition defines the development environment for an individual project. The project
definition is organized into three parts: the hierarchy definition, project controls, and language definitions.

« The hierarchy definition determines the structure of the hierarchy and how data moves through the
hierarchy.

« Project controls define how SCLM operates for the project.
- The language definitions define the languages for the project.

When creating a project definition, it is usually easier to copy a sample project definition and make the
necessary project-specific modifications. The following project definitions are supplied in the ISPF sample
library ISP.SISPSAMP:

« FLM@EXML1 uses several languages such as COBOL, PL/I, and Script.

Chapter 1. Defining the project environment 23

Step 8: Create the project definition

FLM@EXM2 shows several languages using Cross System Product, DB2, and IMS support.

FLMWBPRJ includes languages that are used to build an application on your workstation using SCLM's
workstation build capability.

FLMO1PRJ is used for the example scenario in “Project manager scenario” on page 39, and by the
SCLM Sample Project dialog (see “Sample Project Utility (option 7)” on page 252).

Copy the project definition that is appropriate for your project, FLM@EXM1, FLM@EXM2 or FLMWBPRJ
into your project.PROJDEFS.SOURCE data set. All project definitions and language definitions for your
project should reside in your project. PROIDEFS.SOURCE data set.

Each part of the project definition uses SCLM macros to define the data so that SCLM understands it. The
flexibility of these macros allows you to customize each project definition for specific purposes. Chapter
21, “SCLM macros,” on page 487 describes the use of these macros in detail.

Note: Because these are S/370 Assembler language macros, all rules pertaining to macros apply. In
addition, there are some SCLM rules involving the use of the macros.

Alternate project definitions

You can generate more than one project definition for a project. Each project definition defines the
relationships between groups in the project database and the processes that you can perform on the data
in the project database. Each project definition can define a different database structure, specify different
control options, or support different languages for the project.

Limit the use of alternate project definitions to satisfying a temporary need for a capability that the default
(primary) project definition does not provide. You can use alternate project definitions successfully if they
are never used to introduce or update members controlled under the primary project definition. Thus, you
could use an alternate project definition to export data from the database definition or reference data in
the primary database definition. However, if you use an alternate project definition to restrict an SCLM
verification capability for data that is intended for the primary project definition, you can introduce
integrity problems.

You can have an unlimited number of alternate project definitions for a project.

Figure 14 on page 25 shows an alternate project definition with a primary non-key integration group
(DEPT) defined for the project database structure shown in Figure 4 on page 7.

24 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

PROJ1 FLMABEG

*

*

* TYPE SPECIFICATION
*

ARCHDEF FLMTYPE

DESIGN FLMTYPE

LIST FLMTYPE
LOAD FLMTYPE
0BJ FLMTYPE

SOURCE FLMTYPE
*
*

* GROUP SPECIFICATION, DEFINE THE AUTHORIZATION CODES
*
RELEASE FLMGROUP AC=(REL) ,KEY=Y

TEST FLMGROUP AC=(REL),KEY=Y,PROMOTE=RELEASE
INT FLMGROUP AC=(REL),KEY=Y,PROMOTE=TEST
DEPT FLMGROUP AC=(REL),KEY=N,PROMOTE=INT

USER1 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
USER2 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
USER3 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
*

*

* PROJECT CONTROLS

*
FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, C

MAXLINE=75

*

*

* LANGUAGE DEFINITIONS

*
COPY FLM@ARCD -- ARCHITECTURE LANGUAGE =
COPY FLM@TEXT -- TEXT LANGUAGE 5o
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE 5o
COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE =
COPY FLM@COBE -- Enterprise COBOL LANGUAGE 5o
COPY FLM@FORT -- FORTRAN IV LANGUAGE 5o
COPY FLM@PSCL -- PASCAL LANGUAGE =
COPY FLM@PLIE -- Enterprise PL/I LANGUAGE 5o
COPY FLM@L370 -- 370 LINKAGE EDITOR 5o

*

FLMAEND

Figure 14. Sample Alternate Project Definition

Create the hierarchy definition

The hierarchy definition defines the project's hierarchy using groups and types. The rules for moving data
within the hierarchy are defined with authorization codes. This information was created in Steps 1, 2, and
3. Modify the example project definition using the following macros and the information from Steps 1, 2,
and 3 to define the hierarchy.

The macros that are used in the hierarchy definition are shown in the order that they are usually used in
the project definition.

Specify the project name with FLMABEG

This macro defines the project name. It is required and must be the first macro in the project definition.
You can use it only once. The project name must match the first qualifier of the PROJDEFS.LOAD data set.

If you want more than one project definition for a project, keep the project name in the alternate project
definitions the same. See “Alternate project definitions” on page 24 for more information. In the example
Figure 15 on page 30, the FLMABEG macro defines project PROJ1.

Define authorization groups with FLMAGRP

Use this macro to define a set (or group) of authorization codes. This macro is optional and needed only if
you are defining a large number of authorization codes. You can use it multiple times.

Chapter 1. Defining the project environment 25

Step 8: Create the project definition

The FLMAGRP provides a way of using an identifier to represent a list of authorization codes. If you decide
to use multiple authorization codes for any of the groups in your hierarchy, it might be easier to associate
an identifier with the list. If the list needs to be changed at a later date, the changes can be made on the
FLMAGRP macros rather than changing the authorization code lists on all the FLMGROUP macros. The
FLMAGRP macro must appear before any reference to the authorization group that it defines. The
example Figure 15 on page 30 uses only one authorization code and therefore does not need to use
FLMAGRP macros.

Define types with FLMTYPE

Use this macro to define one type in the project hierarchy. At least one occurrence of this macro is
required. You can use it multiple times.

Define the types identified in “Step 2: Identify the types of data to support” on page 8 using the FLMTYPE
macro. For example, in the sample project definition depicted in Figure 15 on page 30, type ARCHDEF is
defined to contain architecture members.

Define groups with FLMGROUP

Use this macro to define one group in the project hierarchy. At least one occurrence of this macro is
required. You can use it multiple times.

Define the groups identified in “Step 1: Determine the project's hierarchy” on page 4 using the
FLMGROUP macro. Each group in the hierarchy requires an FLMGROUP statement.

The authorization codes defined in “Step 3: Establish authorization codes” on page 8 must also be
defined now. Use the AC parameter on the FLMGROUP macro to define the authorization codes listed in
“Step 3: Establish authorization codes” on page 8. The example Figure 15 on page 30 shows a project
definition with only one authorization code defined.

End the definition with FLMAEND

This signifies the end of the project definition. It must be the last macro in the project definition and is
required. You can use it only one time.

Set the project control options

The project control options dictate SCLM processing for an individual project. When this step is complete,
the project controls of the project definition will be set up for the new project. Use project control options
to specify:

 Primary accounting data set

- Secondary accounting data set

« Export accounting data set

« Audit control data set

« Cross-dependency data set

« Cross-dependency dynamic update

- VSAM Record Level Sharing

- Versioning partitioned data set

« Project partitioned data set naming conventions

- Maximum lines per page

« Number of versions to keep

« Translator option override

« Member level locking

« SCLM temporary data set allocation

- User exit routines

26 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

The following macros that can be used in the control section of the project definition are shown in the
order that they are usually used in the project definition:

FLMCNTRL
Use this macro to specify project-specific control options. The options on FLMCNTRL apply to the
entire project. This macro is optional unless you change any of SCLM's default control options. You can
use it one time.

FLMALTC
Use this macro to provide alternate control for individual groups. This macro is used to override
certain options on the FLMCNTRL macro for specific groups. The options on the FLMALTC macro apply
only to the groups using it. This macro is optional. You can use it multiple times.

FLMATVER
Use this macro to enable the audit and version capability and to define the type of data, (audit or audit
and versioning, to capture with the capability. If a project is using the versioning capability, it must
also use the audit capability. This macro is optional. You can use it multiple times.

Primary accounting data set specification

The ACCT control option specifies the name of the primary accounting data set. The data set you specify
must be the name of the VSAM cluster you want to use. The default accounting cluster name is
project.ACCOUNT.FILE, where project isthe 8-character name for the project.

In the example of a project definition, Figure 15 on page 30, the primary accounting data set name is
PROJ1.ACCT.FILE.

Secondary accounting data set specification

The ACCT2 control option specifies the name of a backup VSAM accounting data set for the project. If a
severe problem occurs with the primary accounting data set, you could use this backup data set to restore
the primary accounting information.

If you use this option, additional VSAM updates to the secondary accounting data set take place and can
affect SCLM's performance.

Export accounting data set specification

The EXPACCT control option specifies the name of the export accounting data set. The data set you
specify must be the name of the VSAM cluster you want to use. The following variables can be used in
specifying the name of the export accounting data set name:

* @@FLMPRJ
* @@FLMGRP
« @@FLMUID

The EXPACCT control option must have a data set name that is different from the ACCT or ACCT2 control
option specified in FLMCNTRL or any FLMALTC macro.

The example project definition, Figure 15 on page 30 does not specify an export accounting data set.

Audit control data sets specification

The primary and secondary audit control data sets are optional. They only need to be specified if SCLM's
auditing capability will be used. The VERS and VERS2 control options are used to specify the audit control
data sets created in “Step 6: Allocate and create the control data sets” on page 17. The VERS control
option specifies the primary audit control data set. The VERS2 control option specifies the secondary
audit control data set that is a backup for the primary audit control data set. The FLMALTC macro can be
used to specify different audit control data sets on specific groups.

Chapter 1. Defining the project environment 27

Step 8: Create the project definition

Cross-dependency data set specification

The Cross-dependency data set is optional. It is only required if the Where-used function is to be used.
The XDEP control option is used to specify the name of the Cross-dependency data set. The FLMALTC
macro can be used to specify different Cross-dependency data sets on specific groups.

Cross-dependency data set dynamic update specification

The XDEPDYN control option is used to control the dynamic updating of the Cross-dependency data set. If
XDEPDYN is set to Y, then the Cross-dependency data set is kept in sync with changes to the accounting
data set. XDEPDYN may be set to N if the extra I/O activity is causing performance problems. The
XDEPUPDT service should then be used to synchronise the Cross-dependency data set with the
accounting data set.

VSAM Record Level Sharing (RLS)

The VSAMRLS control option indicates whether VSAM Record Level Sharing should be used. The default
value is NO. The example found in this chapter does not use VSAM Record Level Sharing.

Versioning partitioned data sets specification

Specifying the names of versioning partitioned data sets is optional. The VERPDS control option allows
you to specify the names of partitioned data sets that will contain the versioned data for a project. If the
names of the versioning partitioned data sets will be different for specific groups, the FLMALTC macro
must be used to associate the names of the versioning partitioned data sets with the specific groups. The
following variables can be used in specifying the name of the versioning partitioned data set name:

* @@FLMPRJ
« @@FLMGRP
* @@FLMTYP
+ @@FLMDSN

Project partitioned data set naming conventions

The DSNAME control option is used to specify a naming convention other than the SCLM default for the
project partitioned data sets. The DSNAME option allows the project manager to specify the naming
convention for all the data sets in the hierarchy. If the naming convention of the project partitioned data
sets will be different for specific groups then the FLMALTC macro must be used so the naming convention
for the data sets associated with the specific groups will be changed. For more information about
modifying the naming convention for project partitioned data sets see “Flexible naming of project
partitioned data sets” on page 12.

Maximum lines per page

Use the MAXLINE control option to specify the maximum lines per page for all SCLM-generated reports.
The default is 60. The minimum number of lines per page is 35. In the example project definition Figure
15 on page 30, the maximum number of lines per page defaults to 60.

Number of versions to keep

Use the VERCOUNT parameter to specify how many versions of a member to keep. The default value of
zero, used in the example found in this chapter, indicates that all versions are kept. The number of
versions specified using this parameter applies to all types that are versioned. The VERCOUNT parameter
on the FLMATVER macro can be used to override this value for specific types.

Valid values are 0 and any integer value greater than or equal to 2. Because that is what is already in the
hierarchy, 1 is not a valid value. If you specify a value other than the default and you intend to version
multiple groups in the hierarchy, either use the FLMALTC macro to specify different VERPDS data sets for

28 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

each group or use the @@FLMGRP variable in the VERPDS name on the FLMALTC macro. Failure to
allocate and specify unique VERPDS data sets can result in difficulty retrieving versions.

Translator option override

The OPTOVER control option allows you to keep developers from overriding project-defined translator
options. If you specify Y, developers can override the translator options for any of the languages by using
the PARM statement in the architecture members. For more details on specifying translator options in
architecture members, see Chapter 11, “Architecture definition,” on page 269.

If you specify N, SCLM uses only translator options you specify in the language definition for the
translators. Specifying N also overrides the OPTFLAG parameter, which allows option override by the
translator. The default for the OPTOVER control option is Y. In the example project definition Figure 15 on
page 30, the OPTOVER option defaults to Y.

Member level locking

Member level locking allows SCLM administrators to stop users from modifying members that belong to
other users. To implement member level locking, perform the following steps:

« Change the FLMCNTRL macro in the project definition to specify the parameters MEMLOCK=Y,
CONTROL, and ADMINID.

« Reassemble the project definition.
The user you specify in the ADMINID parameter will be the default SCLM administrator and will be able to

add other SCLM administrators using the SCLM Admin option. See “Maintaining SCLM administrators
(option A)” on page 253 for more information.

When member level locking is enabled, you will be able to edit a member if any of the following conditions
is true:

 You are the default SCLM administrator (ADMINID parameter).
 You are defined as an SCLM administrator (option A).
« The accounting record doesn't exist at the development level.

« The accounting record exists at the development level and your user ID matches the change user ID on
the accounting level.

If another user needs to modify the member, either the SCLM administrator or the user who last updated
the member (Change User ID on the accounting record) can transfer ownership using the Transfer option
in option 3.1. See “Transfer ownership” on page 172.

SCLM temporary data set allocations

Many installations specify one or more I/O unit names as Virtual Input Output (VIO) devices at system
generation time. Use of these devices typically improves system performance by eliminating much of the
overhead and time required to move data physically between main storage and an I/0 device.

To take advantage of this facility, specify the name of the VIO unit in your project definition as the
VIOUNIT parameter on the FLMCNTRL macro. This unit will be used for all temporary data sets under the
following conditions:

« IOTYPE=0,P,S,orW
« CATLG=N
* RECNUM <= the MAXVIO parameter.

Some of the temporary data sets used by versioning will use the VIO unit as well as long as the size of the
temporary data set to be allocated is less than or equal to the MAXVIO value.

Temporary data set allocations that fail to meet any of the preceding conditions will be allocated using the
unit specified via the DASDUNIT parameter on the FLMCNTRL macro.

Chapter 1. Defining the project environment 29

Step 8: Create the project definition

The default value for MAXVIO is 5000, and the maximum allowable value is 2147483647. A relatively
large value should be specified in order to ensure that SCLM temporary data sets are allocated using the
VIO unit. If SCLM functions fail for lack of memory (S80A ABEND or S878 ABENDS), try reducing this
value.

The size of the temporary data sets allocated for translators is determined by the attributes specified on
the FLMALLOC macros in the language definition. The size of the temporary data sets used by versioning
is based on the attributes of the source data set being versioned.

User exit routine specification

SCLM provides a number of exit points that you can use to customize SCLM processing or to integrate
SCLM with other products. You can specify your own user exit routines in the project definition using the
user exit parameters on the FLMCNTRL macro. See Chapter 2, “User exits,” on page 53 for more
information.

SCLM includes a sample user exit for use with Tivoli® Information Management. See Chapter 6, “Using
SCLM and Tivoli Information Management for z/0S,” on page 125 for more information.

Example project definition

Figure 15 on page 30 shows an example of a project definition. The source for this example can be found
in the ISPF sample library, ISP.SISPSAMP, member FLM@EXM1.

TITLE '*%% PROJECT DEFINITION FOR PROJECT=PR0OJ1 *%x'
PROJ1 FLMABEG
*
ettt s sk s s sk e s s s e o s sk s e o s sk e e o s sk e e o s sk sk e e o s A

* * DEFINE THE AUTHORIZATION CODES *
* ok
GRP1 FLMAGRP AC=(A1,B1,C1)
GRP2 FLMAGRP AC=(A2,B2,C2)

GRPALL FLMAGRP AC=(GRP1,GRP2)

*

% etk sk ok sk sk ok sk o sk ek ok sk ek ok ko ok ke ok ek ke
* * DEFINE THE TYPES *
PR W P PR ST PR PR SRR PR EERE RS ERREER SRR R R
*

ARCHDEF FLMTYPE EXTEND=SOURCE

COMP FLMTYPE
DICT FLMTYPE
DOCS FLMTYPE

IDILANGX FLMTYPE
LINKLIST FLMTYPE

LIST FLMTYPE
LMAP FLMTYPE
LOAD FLMTYPE
0BJ FLMTYPE
0BJ1 FLMTYPE
0BJ2 FLMTYPE

SCRIPT FLMTYPE EXTEND=SOURCE
SOURCE FLMTYPE
*

* ok
* * DEFINE THE GROUPS *
% etk ks koo sk o sk sk ok sk ek ok ko ok ke ok ek ke
*

DEV1 FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=TEST

DEV2 FLMGROUP AC=(GRP2),KEY=Y,PROMOTE=TEST

TEST FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=RELEASE

RELEASE FLMGROUP AC=(GRPALL),KEY=Y,ALTC=RELDB
*

Figure 15. Example Project Definition (Part 1 of 3)

30 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

& PROJECT CONTROLS

khkkkkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkkkkkhkk

*

FLMCNTRL ACCT=PROJ1.ACCT.FILE, c
VERS=PROJ1.VER1.FILE, C
VERS2=PR0OJ1.VER2.FILE, C
MAXVI0=999999, c
VIOUNIT=VIO

*

RELDB FLMALTC ACCT=PR0OJ1.ACCT.FILEX, c
VERS=PROJ1.VERL.FILEX, c
VERS2=PR0OJ1.VER2.FILEX

*

khkkkkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhhkkkkhkhkk

2 VERSIONING AND AUDITABILITY 2

*

*

FLMATVER GROUP=TEST, c
TYPE=SOURCE, c
VERSION=YES

*

FLMATVER GROUP=RELEASE, c
TYPE=SOURCE, C
VERSION=YES

& LANGUAGE DEFINITION TABLES

khkkkkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkkhkhkhkhhkkhkhkhkhhkhkhkhkhhkkhkhkhkhkhkhkhkkkkkhkhkik

*

*

B S S S e e T
* NON-COMPILERS

*
COPY FLM@ARCD -- ARCHITECTURE DEF. LANGUAGE --
COPY FLM@CLST -- CLIST LANGUAGE --
COPY FLM@REXX -- REXX LANGUAGE --
COPY FLM@REXC -- REXX PARSER AND COMPILER 5o
COPY FLM@TEXT -- TEXT LANGUAGE --
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --
COPY FLM@BOOK -- SCRIPT/BOOKMASTER LANGUAGE --

*

ok ok
* REXX PARSERS WITH STANDARD COMPILERS

*
COPY FLM@RASM -- 370 ASSEMBLER H LANGUAGE --
COPY FLM@RC37 -- 370 C LANGUAGE --
COPY FLM@RCBL -- COBOL IT LANGUAGE --
*

Figure 16. Example Project Definition (Part 2 of 3)

Chapter 1. Defining the project environment 31

Step 8: Create the project definition

* STANDARD COMPILERS USING SYSTEM MACRO LIBRARIES
B S T S T e e T e
*

COBOL FLMSYSLB SYS1.EXAMPLE.MACROS

COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --
COPY FLM@ASMH -- 370 ASSEMBLER H LANGUAGE --
COPY FLM@C370 -- 370 C LANGUAGE --
COPY FLM@CPLK -- 370 C + PRE-LINK LANGUAGE --
COPY FLM@CLNK -- 370 C PRE-LINK/LINK-EDIT 5o
COPY FLM@COBL -- COBOL LANGUAGE --
COPY FLM@COB2 -- COBOL IT LANGUAGE --
COPY FLM@COBE -- Enterprise COBOL LANGUAGE --
COPY FLM@FORT -- FORTRAN IV LANGUAGE --
COPY FLMOHLAF -- HIGH LEVEL ASSEM. LANGUAGE --
* -- WITH FAULT ANALYSER oo
COPY FLM@HLAS -- HIGH LEVEL ASSEM. LANGUAGE --
COPY FLM@PSCL -- PASCAL LANGUAGE --
COPY FLM@PLIC -- PL/I CHECKOUT LANGUAGE --
COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE --
COPY FLM@PLIE -- Enterprise PL/I LANGUAGE --

COPY FLM@OBJ -- DUMMY LANG DEF TO MIGRATE 0BJ --
COPY FLM@COPY -- COPY 0BJ TO OUTPUT TYPE =
*
ok ok
* LINKAGE EDITORS *
*
COPY FLM@L370 -- 370 LINKAGE EDITOR =

*
ok ok
*
FLMAEND
*
* 5694-A01 COPYRIGHT IBM CORP 1992, 2007

Figure 17. Example Project Definition (Part 3 of 3)

Define the language definitions

Language Definitions define the languages and translators that a project uses. SCLM functions invoke
translators (such as compilers, parsers, and linkage editors) based on a member's language. The language
definition defines the translators used by each language. Each language can have multiple translators
defined for it. The translators can be IBM program products, independent program products, or user-
written translators.

IBM provides examples of language definitions for many commonly used languages such as COBOL and
PL/I.

Table 5. Language Definitions Supplied with SCLM

Compilers and Linkage Editors Language Definitions
Architecture definition FLM@ARCD (noncompiler)
BookMaster® FLM@BOOK (noncompiler)
CICS® map groups FLM@BMS

CLIST FLM@CLST (noncompiler)
COBOL 0S/VS FLM@COBL

COBOL OS with CICS preprocessing FLM@CCOB

COBOL OS with DB2 preprocessing FLM@2COB

COBOL OS with DB2 and CICS preprocessing FLM@ECOB

32 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

Table 5. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors

Language Definitions

COBOLII FLM@COB2
COBOL IT with CICS preprocessing FLM@CICS
COBOL II with DB2 preprocessing FLM@2C02
COBOL II with DB2 and CICS preprocessing FLM@ECO2
COBOLII with member expansion and CICS FLM@ICO2
preprocessing

Enterprise COBOL FLM@COBE
COBOL with integral CICS preprocessing FLM@CCBE
Enterprise COBOL with integral DB2 FLM@2CBE
preprocessing

Enterprise COBOL with integral DB2 and CICS FLM@2CCE

preprocessing

COBOL FLM@RCBL (COBOL parser written in REXX)

C/C++ for MVS FLM@RCIS (C/C++ parser written in REXX)

C/370 FLM@C370, FLM@RC37 (C/370 parser written in
REXX)

C/370 with CICS preprocessing FLM@CC

C/370 with DB2 preprocessing FLM@2C

C/370 with DB2 and CICS preprocessing FLM@EC

C/370 with member expansion and CICS FLM@IC

preprocessing

C/370 with pre-link FLM@CPLK

C/370 pre-link with link-edit FLM@CLNK

DB2 See Table 24 on page 294

Enterprise COBOL compiler with integral DB2 FLM@2CBF

preprocessing and Fault Analyzer side file

generation.

DB2 and PL/I enterprise compiler and NCAL FLM@2PLF

linkedit to a sub-module library with Fault

Analyzer side file generation.

FORTRAN IV FLM@FORT

FORTRAN IV with DB2 preprocessing FLM@2FRT

JOVIAL FLM@JOV FLM@JOVC

Object language definition to migrate object FLM@COPY

modules into SCLM as outputs (non-editable)

Object/Load dummy language definition to FLM@OBJ

migrate object and load into SCLM as inputs
(editable)

Chapter 1. Defining the project environment 33

Step 8: Create the project definition

Table 5. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors

Language Definitions

Pascal FLM@PSCL
PL/I Checkout Compiler FLM@PLIC
PL/I Optimizer with DB2 preprocessing FLM@2PLO
PL/I Optimizing Compiler FLM@PLIO
PL/I Optimizer with CICS preprocessing FLM@CPLO
PL/I Optimizer with DB2 and CICS FLM@EPLO
preprocessing

PL/I Optimizer with member expansion and FLM@IPLO
CICS preprocessing

Enterprise PL/I FLM@PLIE
Enterprise E’L/I with integral CICS FLM@CPLE
preprocessing

Enterprise PL/I with integral DB2 preprocessing FLM@2PLE

REXX

FLM@REXX (noncompiler) FLM@REXC (compiler)

Language Parsers written in REXX

FLM@RASM (Assembler), FLM@RCBL (COBOL),
FLM@RC37 (C/370), FLM@RCIS (C/C++ for MVS)

SCRIPT 3 FLM@SCRP (noncompiler)
S/370 Assembler F FLM@ASM

S/370 Assembler with DB2 preprocessing FLM@2ASM

S/370 Assembler with CICS preprocessing FLM@ASMC

S/370 Asse'mbler with DB2 and CICS FLM@EASM
preprocessing

S/370 Assembler with member and CICS FLM@IASM
preprocessing

S/370 Assembler H FLM@ASMH

High Level Assembler for MVS

FLM@HLAS, FLM@RASM (Assembler parser written in
REXX)

S/370 Linkage Editor

FLM@L370

TEXT

FLM@TEXT (noncompiler)

All the example language definitions are located in the data set ISP.SISPMACS.

The ISPF Sample and Macro libraries contain a number of other files to support SCLM workstation builds.
See “ISPF Sample and Macro libraries” on page 307.

This step describes how to define language definitions to the project definition. When this step is
complete, all the languages your project will use will be defined.

To define the language definitions:

1. Determine what languages are used in your project.

2. Copy the appropriate example language definitions to the project.PROJDEFS.SOURCE data set
allocated in “Step 4: Allocate the PROJDEFS data sets” on page 11.

34 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

3. Modify the language definitions.

If you do not find an example language definition that meets your project requirements, you can write
a new language definition. For instructions on defining a new language to SCLM, see “Defining a new
language to SCLM” on page 100.

See Chapter 21, “SCLM macros,” on page 487 for details on the use of each SCLM macro.

Modifying example language definitions

Use the following macros to modify language definitions for specific project requirements.

Table 6. SCLM Macros for Language Definition

Macro

Purpose

FLMSYSLB

Use this macro to define data sets that contain system, project, or language
dependencies that are referenced by SCLM members but are not in the SCLM
hierarchy themselves. Examples are system macros for Assembler programs and
compiler-supplied include files for C programs.

FLMLANGL

Use this macro to define the language to SCLM.

FLMINCLS

Use this macro to associate sets of includes found during the parse of a member with
the types in the project definition that contain those includes. FLMALLOC macros
then reference this macro to allocate the include libraries for build translators. The
FLMINCLS macro can be used multiple times for each language, but each FLMINCLS
macro must have a unique name within the language and be associated with at least
one FLMALLOC macro. This helps ensure that the includes that are found by build are
the same ones found by the translators.

FLMLRBLD

Use this macro to tell SCLM to automatically rebuild members with this language
after they are promoted into the listed groups.

FLMTRNSL

Use this macro to define a translator for a language. It can be used multiple times for
a language.

FLMTOPTS

Use this macro to vary the options passed to a build translator based on the group
where the build is taking place. Options can be appended to the existing options or
replace the options completely.

FLMTOPTS macros must follow an FLMTRNSL macro with FUNCTN=BUILD.

FLMTCOND

Use this macro to specify conditional execution of a BUILD translator. Part of the
specification can include examination of return codes from previous BUILD
translators in the language definition.

FLMALLOC

Use this macro for each data set allocation required by a translator. If you are using a
ddname substitution list, specify an FLMALLOC macro for each ddname in the correct
order. If not, determine the ddnames that are needed by the translator and specify
an FLMALLOC macro for each ddname.

FLMCPYLB

Use this macro to identify data sets to be concatenated to a ddname. The data sets
must be preallocated. The FLMCPYLB data sets are used as input to the Parse and
other translators.

For each language, take the following actions as necessary:

- Specify data sets containing dependencies that are not to be tracked, such as assembler system macros
(macro FLMSYSLB).

« Specify the maximum number of includes, change codes, user data records, compilation units, and
external dependencies expected in a source member (macro FLMLANGL; keyword BUFSIZE).

Chapter 1. Defining the project environment 35

Step 8: Create the project definition

« Determine if ddname substitution is needed for the translator. This information can be found in the
translator documentation. Adjust the PORDER parameter on the FLMTRNSL macro as needed.

« Verify translator load module names and load data sets for accuracy (macro FLMTRNSL; keywords
COMPILE, DSNAME, and TASKLIB).

- Adjust translator return codes to project requirements if nonzero return codes are acceptable (macro
FLMTRNSL; keyword GOODRC).

« Update default translator options (macro FLMTRNSL; keyword OPTIONS).
- Verify translator version information (macro FLMTRNSL; keyword VERSION).
« Specify output listings (macro FLMALLOC; keyword PRINT).

« Specify output default types (macro FLMALLOC; keyword DFLTTYP) to match the FLMTYPE type
specified in the project definition.

- Verify that system libraries are being allocated for build translators. Either specify ALCSYSLB=Y on the
FLMLANGL macro or ensure that the data sets from FLMSYSLB macros are specified on FLMCPYLB
macros following IOTYPE=I allocations.

« Specify the include sets for the language to use. You must specify all the include-sets returned by the
parser for the language. If you add a new FLMINCLS macro, ensure that it is referenced by at least one
FLMALLOC of a build translator. If you remove an FLMINCLS macro, update any FLMALLOC macros that
reference it, ensuring that no member's accounting data contains references to that include set.

Figure 18 on page 37 shows an example of an Enterprise COBOL language definition.

36 z/0S: z/OS ISPF SCLM Guide and Reference

Step 8: Create the project definition

FLMLANGL LANG=COBE ©
LANGDESC="'ENTERPRISE COBOL', ©

* --PARSER TRANSLATOR-- *
B S S T T
*

FLMTRNSL ~ CALLNAM='SCLM COBOL PARSE',
FUNCTN=PARSE,
COMPILE=FLMLPCBL,
PORDER=1,
CALLMETH=LINK,
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC TIOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

O0O0O0O0

*
B R S T S S e e T e
* --ENTERPRISE COBOL INTERFACE-- *

FLMTRNSL CALLNAM="'ENTERPRISE COBOL COMPILER',
FUNCTN=BUILD,
COMPILE=IGYCRCTL,
DSNAME=IGY,SIGYCOMP,
VERSION=3.1,
GOODRC=0,
PORDER=1,
OPTIONS=(XREF,LIB,APOST,NODYNAM,LIST,NONUMBER, NOSEQ)

OOOO0O0O0

* --DDNAME ALLOCATION-- *
ok ok
*
FLMALLOC TIOTYPE=0,DDNAME=SYSLIN,KEYREF=0BJ, C
RECNUM=5000,DFLTTYP=0BJ

*FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
*FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
*FLMALLOC IOTYPE=W,DDNAME=SYSUT1, RECNUM=5000
*FLMALLOC IOTYPE=W,DDNAME=SYSUT2, RECNUM=5000
*FLMALLOC IOTYPE=W,DDNAME=SYSUT3, RECNUM=5000
*FLMALLOC IOTYPE=W,DDNAME=SYSUT4,RECNUM=5000
*FLMALLOC IOTYPE=A,DDNAME=SYSUT5, RECNUM=5000
*FLMALLOC IOTYPE=A,DDNAME=SYSUT6,RECNUM=5000
*FLMALLOC IOTYPE=A,DDNAME=SYSUT7,RECNUM=5000

Figure 18. Enterprise COBOL Language Definition Example (Part 1 of 2)

*
FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE
*
FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH
FLMCPYLB NULLFILE
*
FLMALLOC IOTYPE=0,DDNAME=SYSPRINT,KEYREF=LIST, ©
RECFM=FBA, LREC=133, C
RECNUM=50000, PRINT=Y,DFLTTYP=LIST

Figure 19. Enterprise COBOL Language Definition Example (Part 2 of 2)

Chapter 1. Defining the project environment 37

Step 9: Assemble and link the project definition

In the example in Figure 18 on page 37, the COBOL language is defined to SCLM by the FLMLANGL macro.
The FLMTRNSL parameters specify particular information about the compiler:

« The name of the compiler: ENTERPRISE COBOL.
« The name of the compiler load module: IGYCRCTL.

« The version of the compiler: 3.3.1.
« The compiler options: XREF, LIB, APOST, NODYNAM, LIST, NONUMBER, NOSEQ.

The FLMALLOC macros following the build FLMTRNSL macro specify each ddname needed by the COBOL
compiler. SCLM allocates the ddnames specified on the FLMALLOC macro before invoking the translator
(in this example, the COBOL IKFCBLOO load module). The FLMALLOC parameters allow specification of
the record format (RECFM), the logical record length (LRECL), the number of records (RECNUM), and other
options. An FLMCPYLB macro specifies that a ddname be associated with a null data set.

The language definitions must be defined to the project definition, either by placing the language
definitions directly into the project definition or having the language definitions copied into the project
definition when the project definition is assembled. It is easier to maintain the project definition if each
language definition is kept in a separate member and copied into the project definition when the project
definition is assembled. The example project definition Figure 15 on page 30 uses this method of
including the language definitions.

Step 9: Assemble and link the project definition

Assemble all project definitions with the SCLM macro set using the standard IBM S/370 Assembler. Once
assembled, link the object code using the standard IBM S/370 linkage editor and store the load module
into the project.PROJDEFS.LOAD data set. All project definitions must reside in the
project.PROJDEFS.LOAD data set to allow SCLM to be invoked correctly. SCLM accesses the project
definition's load module when SCLM is invoked. If the project definition is updated, reassembled, and
relinked while the current load module is being used, the active invocation of SCLM will not be affected.

Make sure all project definition load modules are reentrant. Nonreentrant project definition load modules
can cause error conditions. Specify the RENT option during link-edit. The load module name of the default
project definition for a project must match the project identifier specified on the FLMABEG macro.
Alternate project definitions can have any load module name, but all alternate project definitions must
have the same project identifier, specified on the FLMABEG macro, as the default project definition.

The SCLM macro set performs some verification of the project definition during assembly. When warning
or error conditions are detected, the macros issue MNOTES, which are SCLM-specific diagnostic
comments. The MNOTES produced by SCLM are listed in z/0S ISPF Messages and Codes. If the text of an
MNOTE is missing, verify that the FLMABEG macro appears at the top of the project definition and is
referenced correctly. Here are the return codes from the assembler:

0
The SCLM macros detected no errors.

q
The SCLM macros detected a potential error. The project definition might be valid, but might not
reflect the desired options. Review the assembler listing for details.

8

The SCLM macros detected errors. Do not use the project definition until you correct the errors
identified in the assembler listing.

Other
The assembler detected errors. Examine the assembler listing for the error messages and consult the
assembler's user guide for additional information. Do not use the project definition until you correct
the errors identified in the assembler listing.

Assemble and link example

The following example illustrates JCL that assembles and links a project definition. This example can be
found in member FLMO2PRJ in the data set ISP.SISPSAMP.

38 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

//jobname JOB (wkpkg,dpt,bin), 'name’
//* code additional JOBCARD statements here

//*
//ASMPROJ PROC PROJID=,PROJDEF=
A e T *
//* ASSEMBLE AND LINK A PROJECT DEFINITION *
//* *
//* PROC PARAMETERS: *
//* *
//* PROJID - HIGH-LEVEL QUALIFIER FOR PROJECT *
//* PROJDEF - PROJECT DEFINITION MEMBER NAME *
//* *
//* NOTE: MODIFY SYSLIB DSNAMES TO GET THE SCLM RELEASE MACROS *
//* AND ANY LANGUAGE DEFINITIONS YOU NEED. *
R *
//ASM EXEC PGM=ASMA90,REGION=4000K, PARM=0BJECT
//SYSLIB DD DSN=&PROJID..PROJDEFS.SOURCE,DISP=SHR

// DD DSN=ISP.SISPMACS,DISP=SHR

//SYSPRINT DD SYSOUT=H

//SYSPUNCH DD DUMMY

//SYSIN DD DSN=&PROJID..PROJDEFS.SOURCE (&PROJDEF) ,DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2))

//SYSLIN DD DSN=&&INT,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL, (5,5,0)),
// DCB=(BLKSIZE=400)

A e *
//LINK EXEC PGM=IEWL,PARM='RENT,LIST,MAP', REGION=512K

//SYSPRINT DD SYSOUT=H

//SYSLIN DD DSN=&&INT,DISP=(OLD,DELETE)

//SYSUT1 DD UNIT=SYSALLIDA,6SPACE=(CYL, (2,2)),DISP=NEW

//SYSLMOD DD DISP=SHR,DSN=&PROJID..PROJDEFS.LOAD (&PROJDEF)

// PEND

R e L L e E T *

//ASMLINK EXEC PROC=ASMPROJ,PROJID=SCLM,PROJDEF=SCLM

Project manager scenario

This section describes the steps required to define and install an SCLM project. By completing the steps
outlined in the following sections, the project manager can create a project that is under SCLM control.
The sample project can also be defined using the SCLM sample project utility (Option 10.7). Once the
project has been created, it can be used as a model for building other SCLM projects.

The project manager must perform all the steps described in this chapter before developers can follow
the programmer scenario described in Chapter 10, “Development scenario,” on page 255.

Prerequisites for defining an SCLM project

Before beginning the project definition phase of this activity, you must have the following software, space,
and tools available:

« ISPF with SCLM installed on a z/OS system.

« Enterprise PL/I for z/OS IBMZPLI Version 3.3.0 or equivalent.

« Enterprise COBOL for z/OS IGYCRCTL Version 3.3.1 or equivalent.

- Fault Analyzer. Version 6.1 or equivalent.

« Disk space to contain the data sets for the project. The project requires 265 tracks on 3390 DASD.
= Access to data set ISP .SISPSAMP.

This data set is available as part of the ISPF product. It contains the project definition for this scenario
and other examples. Check with the person at your site who installs ISPF to find out the name of this
data set and how to allocate it.

The member FLMO1PRJ in this data set is the definition for the sample project definition used for this
scenario.

« Access to data set ISP .SISPMACS.

This macro library is included with ISPF and contains the macros used to assemble the project
definition.

Chapter 1. Defining the project environment 39

Project manager scenario

ISPF knowledge at the user level (edit and utilities are used).

« VSAM installed.

Basic VSAM knowledge. (Not required if defining the project with the SCLM Sample Project utility.

Example project overview

This SCLM project contains all the required components of SCLM projects in general and serves as a
model for future projects. A description of the components of the project follows.

Figure 20 on page 40 shows three layers in the SCLM project hierarchy: development, test, and release.

« The development layer promotes to the test layer, and the test layer promotes to the release layer.

« The development layer is composed of the groups DEV1 and DEV2. You can think of these groups as

being assigned to two separate developers. The SCLM hierarchy looks like Figure 20 on page 40.

RELEASE

TEST

DEW1 ‘ DEVZ2

Figure 20. Example Project Hierarchy

Figure 21 on page 41 shows nine modules in the hierarchy: FLM0O1AD9, FLM01CD7, FLM01CD8,

FLM01MD1, FLM01MD2, FLM01MD3,FLM01MD4, FLMO1MD5, and FLMO1MD6. These are the programs
that the developers edit in order to install fixes and new features.

FLMO1MD?2 is written in PL/I and uses the Enterprise PL/I compiler. FLMO1MD2 includes the FLMO1IIN
copybook.

Note: Module FLMO1MDZ2, copybook FLMO1IIN, and the language definition for the Enterprise PL/I
Compiler, are not included if the project is defined using the SCLM sample project utility and the first
optional compiler field was not selected.

Module FLMO1AD9 is written in High Level Assembler. FLMO1AD9 includes the FLMO1INC copybook.

Note: Module FLMO1AD9 and copybook FLMO1INC will be included if the project is defined using the
SCLM sample project utility, but no side file will be generated if the Fault Analyzer field is not selected.

FLM0O1CD7 and FLMQO1CD8 are written in COBOL and use the Enterprise COBOL compiler. FLM0O1CD?7
includes the FLMO1CIN copybook. FLM01CD8 includes the FLMOL1CDT copybook.

Note: Modules FLM01CD7, FLMO1CD8, copybooks FLMO1CIN, FLMO1CDT and the language definition
for the Enterprise COBOL Compiler, are not included if the project is defined using the SCLM sample
project utility and the second optional compiler field was not selected

The other modules are written in S/370 Assembler. They include a member named FLMO1EQU that
contains the register equates commonly used in assembly language programs.

The modules are compiled or assembled by the BUILD function into an application named FLMO1API.
SCLM performs this operation using the architecture definitions contained in the ARCHDEF data sets.

FLMO1AP1 does not directly call any language translators. It references other architecture members.
The Build process creates the load modules FLM01LD7, FLM0O1LD9, FLM0O1LD1, FLM01LD2, FLM0O1LD3,
and FLM0O1LDA4.

Note:

1. Load module FLMO1LD?2 is not created if the project is defined using the SCLM sample project utility
and the first optional compiler field was not selected.

40 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

2. Load module FLMO1LD?7 is not created if the project is defined using the SCLM sample project utility
and the second optional compiler field was not selected.

« FLMO1AP1,FLM01SB1 and FLM01SB2 are high-level architecture members. They do not call any
language translators. FLM01LD7, FLM01LD9, FLM01LD1,FLM01LD2,FLM01LD3, and FLMO1LD4 are LEC
architecture members. FLMO1CMD and FLMO1CM9 are CC architecture members, and FLMO1ARH is an
architecture member that is directly copied into FLM0O1LD3 and FLMO1LD4.

Note:

1. Architecture member FLMO1LD2 is not included if the project is defined using the SCLM sample
project utility and the first optional computer field was not selected.

2. Architecture member FLMO1LD7 is not included if the project is defined using the SCLM sample
project utility and the second optional compiler field was not selected.

Subapplications LEC Architecture CC Architechas Jource
Membars Mermiber Modules

FLMOTLDY FLMO T CIMD FLMOT MDA

FLMOTSBT —

FLMO1LD2 FLMO1MD2
Appication -

FLMOTAP] —— FLMO1CDY
— FLMOTLD?

cC
Architectuns
Member

FLMOTCM9| ——| FLMDTADS
FLMD1LD3 FLMOTMDS

Copy
Anchitectuns
FLMO1382 — Member FLMOT MDS

FLMOTARH '*

FLMO1CD8

—— FLMOTLD?

FLIOTMDé

FLMOTLDA FLIGOT MO

Figure 21. Example Project Architecture

Note:

Chapter 1. Defining the project environment 41

Project manager scenario

1. Source module FLMO1MD2 and architecture member and load module FLMO1LD2 are not included if
the project was defined using the SCLM sample project utility (Option 10.7) and the first optional
compiler field was not selected.

2. Source module FLM01CD7, FLM01CD8, and architecture member and load module FLMO1LD7, are not
included if the project was defined using the SCLM sample project utility (Option 10.7) and the second
optional compiler field was not selected.

Preparing the example project hierarchy

Use the following steps to install the example project data sets on your system. Follow the steps in the
order listed and exactly as they are described. When you have completed all of the steps, you will have an
SCLM project database with which you can experiment to better understand how SCLM works. If you
encounter any errors during the following steps, use the TSO, ISPF, and SCLM messages to correct the
problem. You can also define the sample project using the SCLM Sample Project utility (Option 10.7).

Note: This is the project that uses sample FLMO1PRJ.

In the descriptions that follow, the default naming convention (PROJECT.GROUP.TYPE) is used. Assume
for these examples that the project name is PROJ1. If you use a different name, be sure to inform those
users who plan to complete the programmer scenario.

1. Sign on to TSO.

2. At the READY prompt, start ISPF.

3. Using the ISPF Data Set Utility, allocate the following partitioned data set with space in blocks
(10,50), with 10 directory blocks, and with record format FB, LRECL 80:

PROJ1.PROJDEFS.SOURCE

This partitioned data set will contain the source code for the library structure as defined in the project
definition.

4. Using the ISPF Data Set Utility, allocate the following partitioned data set with space in blocks
(10,50), with 10 directory blocks, and with record format FB, LRECL 80:

PROJ1.PROJDEFS.0BJ

This partitioned data set will contain the object code for the library structure as defined in the project
definition.

5. Using the ISPF Data Set Utility, allocate the following partitioned data set with space in blocks
(10,50), with 10 directory blocks, and with record format U, LRECL 0, BLKSIZE 6144:

PROJ1.PROJDEFS. LOAD
This partitioned data set will contain the load module for the library structure as defined in the
project definition. This member is named PROJ1.

Note: Depending on the ISPF configuration for your site, you might receive warning or error messages
when attempting to edit an SCLM project using the ISPF editor.

6. Use the ISPF Move/Copy Utility to copy the following members from ISP.SISPSAMP into
PROJ1.PROJDEFS.SOURCE: FLMO1ASF, FLMO1ASM, FLMO1CBE, FLMO1PLE, FLMO1PRJ, FLMO1SCR,
FLM01370, FLMO2ALL, and FLMO2ACT.

Note:

a. If you are not using Fault Analyzer, do not copy FLMO1ASF.
b. If you are not using Fault Analyzer, delete the following lines from FLMO1PRJ:

IDILANGX FLMTYPE
COPY FLMO1ASF

42 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

7. Member FLMO2ALL of PROJ1.PROJDEFS.SOURCE is a background job that allocates all of the data
sets needed for this example application. You must provide a job card and change any other
information that is specific to your location; for example, change all the occurrences of USERID to
PROJ1 and alter the job card. After you have made these changes, submit the job.

If this job allocates all the required data sets, you can skip to Step 9. Use the ISPF Data Set List Utility
to determine whether the data sets were allocated.

If the required data sets have not been allocated, you can allocate them by following Step 8.

Note: If you are not using Fault Analyzer, remove the following step from FLMO2ALL:

A

//STEP3ID EXEC PGM=1EFBR14

//DEV1 DD DSN=project.DEV1.IDILANGX,DISP=(NEW,CATLG),UNIT=SYSDA,

// DCB=(RECFM=VB, LRECL=1562,BLKSIZE=0) ,SPACE=(27998, (5,20,10))
//DEV2 DD DSN=project.DEV2.IDILANGX,DISP=(NEW,CATLG) ,UNIT=SYSDA,

// DCB=(RECFM=VB, LRECL=1562,BLKSIZE=0) ,SPACE=(27998, (5,20,10))
//TEST DD DSN=project.TEST.IDILANGX,DISP=(NEW,CATLG) ,UNIT=SYSDA,

// DCB=(RECFM=VB, LRECL=1562,BLKSIZE=0) ,SPACE=(27998, (5,20,10))
//RELEASE DD DSN=project.RELEASE.IDILANGX,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(RECFM=VB, LRECL=1562,BLKSIZE=0) ,SPACE=(27998, (5,20,10))

8. If Step 7 fails, or if you choose not to use the FLMO2ALL JCL member, follow these steps to allocate
the required data sets.

a. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(10,50), with 10 directory blocks, and with record format FB, LRECL 80:

PROJ1.DEV1.SOURCE
PROJ1.DEV2.SOURCE
PROJ1.TEST.SOURCE
PROJ1.RELEASE.SOURCE

These partitioned data sets will contain the source code for the project.

b. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(10,50), with 10 directory blocks, and with record format FB, LRECL 80:

PROJ1.DEV1.ARCHDEF
PROJ1.DEV2.ARCHDEF
PROJ1.TEST.ARCHDEF
PROJ1.RELEASE.ARCHDEF

These partitioned data sets will contain the architecture definition for the project.

c. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(30,100), with 10 directory blocks, and with record format VB, LRECL 137:

PROJ1.DEV1.LIST
PROJ1.DEV2.LIST
PROJ1.TEST.LIST
PROJ1.RELEASE.LIST

These partitioned data sets will contain the listings from the compilations and assemblies of the
modules.

d. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(15,50), with 10 directory blocks, and with record format FB, LRECL 80:

PROJ1.DEV1.0BJ
PROJ1.DEV2.0BJ
PROJ1.TEST.0BJ
PROJ1.RELEASE.OBJ

These partitioned data sets will contain the object code from the compilations and assemblies of
the modules.

e. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(7,13), with 10 directory blocks, and with record format U,LRECL 0, BLKSIZE 6144:

Chapter 1. Defining the project environment 43

Project manager scenario

PROJ1.DEV1.LOAD
PROJ1.DEV2.LOAD
PROJ1.TEST.LOAD
PROJ1.RELEASE.LOAD

These partitioned data sets will contain the load modules from the link-edits of the modules.

f. Using the ISPF Data Set Utility, allocate the following partitioned data sets with space in blocks
(5,20), with 10 directory blocks, and with record format FBA, LRECL 121

PROJ1.DEV1.LMAP
PROJ1.DEV2.LMAP
PROJ1.TEST.LMAP
PROJ1.RELEASE.LMAP

These partitioned data sets will contain the load maps from the link-edits of the modules.

g. Using the ISPF Data Set Utility, allocate the following partitioned data set with space in blocks
(300,100) with 10 directory blocks, and with record format VB,LREC 1562:

PROJ1.DEV1.IDILANGX
PROJ1.DEV2.IDILANGX
PROJ1.TEST.IDILANGX
PROJ1.RELEASE.IDILANGX

These partitioned data sets will contain side files generated by Fault Analyzer.

Note: If you are not using Fault Analyzer, do not allocate PROJ1.*IDILANGX data sets.

9. Using the ISPF Library Utility, rename member FLMO1PRJ in PROJ1.PROJDEFS.SOURCE to PROJ1.
This member contains the source code for the project definition for PROJ1.

10. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(PR0OJ1). Change all occurrences of USERID to
PROJ1.

11. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLMO1ASM). Change all system macro library
references to the library of macros at your location.

You must change the members FLMO1ASF, FLMO1CBE, FLMO1PLE, FLMO1SCR, and FLM01370 so
that libraries, assemblers, and assembler options match the libraries and products in use at your
location. The changes are specified in the samples delivered.

Note: If you make changes to these members after Step 14 while installing this example project,
reassemble and relink the data set PROJ1.PROJDEFS.SOURCE(PROJ1). If you are not sure this step is
required, reassemble and relink.

12. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLMO2ACT). Be sure that the job card contains valid
accounting information. Change all occurrences of USERID to PROJ1.

This member contains JCL that constructs the VSAM cluster used to contain the accounting
information used by SCLM. You also need to alter the volumes for IDCAMS for your location, and you
might need to make additional changes to conform to requirements at your location.

13. Submit the JCL in PROJ1.PROJDEFS.SOURCE(FLMO2ACT). You know that your job has completed
successfully when the PROJ1.ACCOUNT.FILE VSAM cluster is created.

This is the VSAM data set that contains the SCLM accounting information for the project. This job
deletes the cluster and then creates the cluster. Because the cluster does not exist the first time you
submit the job, you receive a return code of 8 in the listing data set.

14. Assemble PROJ1.PROJIDEFS.SOURCE(PRQJ1) using either ISPF Foreground Assembler (option 4.1)
or the sample JCL in “Assemble and link example” on page 38.

Be sure that the SCLM macro library used at your location is in the concatenation sequence for the
libraries used by the assembler. Specify the macro library in the Additional Input Libraries field on the
Foreground Assembly panel.

Look at the listing and confirm that no statements were flagged.

44 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

15. If you used the sample JCL in the “Assemble and link example” on page 38, make sure that member
PROJ1.PROJDEFS.LOAD(PROJ1) exists.

Otherwise, use the ISPF Foreground Linkage Editor to link-edit PROJ1.PROJDEFS.OBJ(PR0OJ1). This
constructs the load module PROJ1.PROJDEFS.LOAD(PROJ1) that is executed by SCLM to control the
library.

Verify that the link occurred without errors.

16. Use the ISPF Move/Copy Utility to copy the following members from ISP.SISPSAMP into
PROJ1.DEV1.SOURCE (these are the source members for the application and are moved into
PROJ1.RELEASE.SOURCE later): FLM0O1AD9, FLM0O1CDT, FLM01CD7, FLM01CD8, FLMO1EQU,
FLMO1CIN, FLMO1IIN, FLMO1INC, FLMO1MD1, FLM01MD2, FLM0O1MD3, FLM01MD4, FLM0O1MD5,
and FLM01MDeé.

17. Use the ISPF Move/Copy Utility to copy the following members from ISP.SISPSAMP into
PROJ1.DEV1.ARCHDEF (these are the architecture definition members and are moved into
PROJ1.RELEASE.ARCHDEF later): FLMO1AP1, FLMO1ARH, FLM01CMD, FLM01CM9, FLM01LD1,
FLMO1LD2, FLMO1LD3, FLM0O1LD4, FLM0O1LD7, FLM0O1LD9, FLM01SB1, and FLM01SB2.

Note: If you are not using Fault Analyzer, edit FLMO1CM9 as follows:

Delete line OUT2 FLM1AD9 IDILANGX
Change PARM1 to PARM

Understanding the sample project definition

This section examines the project definition used for the library in the sample project. Typically, the
project manager is responsible for developing and maintaining the project definition.

1. Select the View option from the SCLM Main Menu and type:
PROJ1
in the Project field
DEV1
in the Group field
Press Enter.

Type 'PR0J1.PROJDEFS.SOURCE (PR0J1) ' inthe Data Set Name field, and press Enter to examine
the member that contains the project definition for PROJ1. The macros are:

FLMABEG

FLMABEG initializes the project definition by defining the project name as PROJ1.
FLMTYPE

FLMTYPE defines each type. The type values are:

ARCHDEF
architecture definitions

SOURCE
source code

LIST
listings from compilers and assemblers

IDILANGX
Fault Analyzer data sets

Note: If you are not using Fault Analyzer, make sure that you have edited FLMO1PRJ as
specified in step 6 of "Preparing the example project hierarchy".

OBJ
object code

LMAP
load module maps

Chapter 1. Defining the project environment 45

Project manager scenario

LOAD
executable load modules

The type names were chosen arbitrarily for this sample project.

FLMGROUP
FLMGROUP defines each group. The PROMOTE keyword defines the library structure. Note that
DEV1 and DEV2 are promoted to TEST and TEST is promoted to RELEASE.

FLMCNTRL
FLMCNTRL identifies the default VSAM data sets for the project. The VSAM data sets store library
control information about the members in the project hierarchy.

COPY
COPY identifies members to be copied into the project definition. The members identified are the
architecture definition language, assembler language, PL/I language, link-edit language, and
SCRIPT language definitions.

FLMAEND
FLMAEND ends the project definition.

An additional developer, DEV3, can be added with another FLMGROUP macro, as shown in the
following example:

DEV3 FLMGROUP AC=(P),KEY=Y,PROMOTE=TEST

The project definition specifies the names of the partitioned data sets used by the project (for
example, PROJ1.DEV1.SOURCE), the library structure for the groups (for example, DEV1 members are
promoted to TEST), and the languages to be used (for example, architecture definition, ASM, COBOL,
PL/I, and link-edit).

2. View the PROJ1.PROJDEFS.SOURCE members:
FLMO1ASF
ASMF language definition
FLMO1ASM
ASM language definition
FLMO1CBE
COBE language definition
FLMO1PLE
PLIE language definition
FLM01370
linkage editor language definition
Note: FLMO1ASF will be displayed only if you are using Fault Analyzer.
Note the following points about these members:

FLMSYSLB
This macro can be used to define a set of libraries that contain project and/or system macros or
includes.

FLMLANGL
This macro specifies the language identifier.

FLMTRNSL
This macro is used once for each translator to be invoked for a language.

The SCLM parser is invoked when the keyword FUNCTN specifies PARSE. The SCLM parser stores
statistics (for example, lines-of-code counts) and dependency information (for example, includes
and copy statements).

The build translator is invoked when the keyword FUNCTN specifies BUILD. In FLM01370, the
linkage editor IEWL is invoked. The build fails unless the return code is equal to, or less than, the
value specified by the keyword GOODRC (0 in this example).

46 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

FLMALLOC
This macro is used to allocate data sets and ddnames required by translators.

Preparing the example project data

The following steps prepare the example project data. Perform the steps in the order listed and exactly as
they are described. When you have completed all of the steps, all necessary data will reside at the
RELEASE group. At this point, you or other SCLM users can use the data to experiment with and
understand SCLM.

1. Select the SCLM option from the ISPF Primary Option panel.

2. Select the Utilities option from the SCLM Main Menu. Type:

PROJ1
in the Project field

DEV1
in the Group field

Leave the Alternate field blank.
3. Skip this step if you are not using Fault Analyzer. Otherwise:

a. From the Utilities panel, select the Migration option. Type:

SOURCE
in the Type field

FLMO1AD9 (the ASM module)
in the Member field

1
in the Mode field

HLAF
in the Language field

1

in the Process field
1

in the Messages field
4

in the Report field
4

in the Listings field
Press Enter to begin processing. The migration utility registers new modules (in this case,
FLMO1AD9) into an SCLM library by creating accounting records for them.
b. Skip this step if you are not using Fault Analyzer. Otherwise, from the Utilities panel, select the
Migration option. Type:
SOURCE
in the Type field

FLMO1INC (the ASM copybook)
in the Member field

1
in the Mode field

HLAF
in the Language field

1
in the Process field

Chapter 1. Defining the project environment 47

Project manager scenario

1

in the Messages field
4

in the Report field
4

in the Listings field
Press Enter to begin processing. The migration utility registers new modules (in this case,
FLMOZ1INC) into an SCLM library by creating accounting records for them.
c. From the Utilities panel, select the Migration option. Type:

SOURCE
in the Type field

FLMOAC* (the COBOL copybook)
in the Member field

1
in the Mode field

COBE
in the Language field

1

in the Process field
1

in the Messages field
4

in the Report field
4

in the Listings field

Press Enter to begin processing. The migration utility registers new modules (in this case,
FLMO1CIN,FLMO1CDT,FLM01CD7,FLM01CD8) into an SCLM library by creating accounting records
for them.

d. From the Utilities panel, select the Migration option. Type:

SOURCE
in the Type field

FLMO1IIN (the PL/I copybook)
in the Member field

1
in the Mode field

PLIE
in the Language field

1

in the Process field
1

in the Messages field
4

in the Report field
4

in the Listings field

Press Enter to begin processing. The migration utility registers new modules (in this case,
FLMOZ1IIN)into an SCLM library by creating accounting records for them.

e. From the Utilities panel, select the Migration option. Type:

48 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

SOURCE
in the Type field

FLMOAMD2 (the PL/I copybook)
in the Member field

1
in the Mode field

PLIE
in the Language field

1

in the Process field
1

in the Messages field
4

in the Report field
4

in the Listings field
Press Enter to begin processing. The migration utility registers new modules (in this case,
FLMO1MD2)into an SCLM library by creating accounting records for them.

4. When the migration is complete, you receive the message MIGRATION UTILITY COMPLETED with
RETURN CODE = 0. The Migration Utility panel reappears. Type:

*
in the Member field

ASM
in the Language field

Press Enter to begin processing.

Notice that you did not have to type EX on the command line or re-enter a value in the Process field.
The value is carried from panel to panel and is maintained as is until you change it.

The Migration Utility registers the SCLM accounting information for the remaining new modules (in
this example, all are assembler language modules). Each time you use the Migration Utility, you can
only migrate modules written in the same language. This example migrates FLMO1MD?2 first. After its
migration, the other modules can be referenced as a group by using the asterisk (*). Because
FLMOL1CDT, FLMO1CIN, FLMOAIIN, FLM01CD7, FLM01CD8, FLM0O1MD2, FLMO1INC, and FLMO1AD9
were migrated first, SCLM does not migrate them again when an * is specified.

Note: FLMO1INC and FLMO1AD9 would be migrated already only if you are using Fault Analyzer.

5. When the migration is complete, you receive the message MIGRATION UTILITY COMPLETED with
RETURN CODE = 0. The Migration Utility panel reappears. Type:

ARCHDEF
in the Type field

in the Member field

ARCHDEF
in the Language field

Press Enter to begin processing.
6. Return to the SCLM Main Menu. Select the Build option and press Enter.
7. On the Build panel, type:

DEV1
in the Group field

Chapter 1. Defining the project environment 49

Project manager scenario

ARCHDEF

in the Type field
FLMO1AP1

in the Member field
/ (slash)

in the Error Listings only field
1

in the Mode field
2

in the Scope field
1

in the Messages field
1

in the Report field
3

in the Listings field

Press Enter. All modules in the project are assembled or compiled. SCLM updates the accounting
information to indicate that a build operation was performed on each module. The Build Messages
and Build Report reappears. The build should complete with a RETURN CODE = 0. The Build panel
reappears.

If all of the site-dependent changes to the system macro library references were not made in “10” on

page 44, build errors can occur during this step. If this happens, correct the macros, reassemble and
link-edit the project definition, and repeat this step.

8. Return to the SCLM Main Menu. Select the Promote option and press Enter.
9. On the Promote panel, type:

DEV1

in the From Group field
ARCHDEF

in the Type field
FLMO1AP1

in the Member field
1

in the Mode field
1

in the Scope field
1

in the Messages field
1

in the Report field

Press Enter. SCLM copies all members for all types at the DEV1 group to the TEST group and then
purges all members from the DEV1 group. The Promote Messages and Promote Report appears. The
Promote should complete with a RETURN CODE = 0. The Promote panel reappears.

10. On the Promote panel, type:

TEST
in the From Group field

ARCHDEF
in the Type field

FLMO1AP1
in the Member field

50 z/0S: z/OS ISPF SCLM Guide and Reference

Project manager scenario

1

in the Mode field
1

in the Scope field
1

in the Messages field
1

in the Report field
EX

on the command line

Press Enter. SCLM copies all members for all types at the TEST group to the RELEASE group and then
purges all members from the TEST group. The Promote Messages and Promote Report appears. The
Promote should complete with a RETURN CODE = 0. The Promote panel reappears.

All of the modules are located in the RELEASE group, and the SCLM example project, PROJ1, is now ready
to use. This scenario illustrates the status of a current release of a product that does not have any
maintenance, test, or development activities underway.

Chapter 1. Defining the project environment 51

Project manager scenario

52 z/0S: z/OS ISPF SCLM Guide and Reference

Chapter 2. User exits

SCLM provides a number of exit points that you can use to customize SCLM processing or to integrate
SCLM with other products. SCLM does not provide the user exit routines to be invoked at these exit points.
You can specify your own user exit routines in the project definition using the user exit parameters on the
FLMCNTRL macro.

There can be performance implications associated with the specification of an exit routine depending on
the processing performed by the exit routine. You can write a user exit routine in any language, including
REXX. The exit routine can use any of the SCLM services to retrieve additional information that is not
returned by the exit.

Writing and compiling a program to be reentrant, then specifying RENT and REUS on the link-edit makes
the invocation of the routine more efficient.

Table 7 on page 53 lists the exits supplied by SCLM, along with the FLMCNTRL parameter used to specify
an associated user exit routine. The "Initial" and "Verify" exits are invoked before any real processing
(change to data) occurs, and can be used to perform tasks such as verifying a user's authority to perform
a given function.

The Promote Copy, Promote Purge, and all "Notify" exits are invoked after processing has completed, and
can be used to perform tasks such as putting an entry into a log file, generating a report, or sending
notification to a specified set of users.

All of these exit points can be used to integrate SCLM with other products as well as to enable customized
processing. For example, a Verify Change Code Exit routine might be used to query an external change
management product to ensure that an open problem request exists for a change being made, and that
the user making the change is authorized to do so. The SCLM sample bridge to Tivoli Information
Management is an example of this type of exit routine.

Here are the available exits, along with the FLMCNTRL parameters used to specify an associated user exit
routine.

Table 7. Exits and Exit Routine Specifications

Exit Exit Routine When Invoked
Specification
Verify Change CCVFY + At the start of an SCLM Edit session:
Code Exit

— In SCLM Edit (option 2) before the member list is displayed
(note that in this case, no member name is passed to the exit)

— In SCLM Edit (option 2), on entry to edit of a member if the
member name is specified explicitly

— Inthe Library utility (3.1), on entry to edit of a member
« When Change Code or Language is changed in SPROF
= By the EDIT service.

Save Change Code [CCSAVE « After a member has been saved, but before SCLM accounting
Exit information is updated for the member

= By the Migrate (3.3) utility
» By the EDIT, MIGRATE, SAVE, and STORE services

© Copyright IBM Corp. 1990, 2021 53

Table 7. Exits and Exit Routine Specifications (continued)

Exit Exit Routine When Invoked
Specification
Change Code VERCC « At the start of an SCLM Edit session:
Verification Exit))) o
(superseded) — in SCLM Edit (option 2) before the member list is displayed

(note that in this case, no member name is passed to the exit)

— in SCLM Edit (option 2), on entry to edit of a member if the
member name is specified explicitly

— inthe Library utility (3.1), on entry to edit of a member
« When Change Code is changed in SPROF
By the Migrate (3.3) and Import (3.7) utilities
- By the EDIT, IMPORT, MIGRATE, SAVE, and STORE services
Note:

1. If VERCC is present in PROJDEFS, the Change Code cannot be
blank when a member is saved.

2. VERCC has been superseded by CCVFY.

Build Initial Exit BLDINIT At the beginning of Build before any verification or processing
occurs
Build Notify Exit BLDNTF or After Build processing completes
BLDEXT1
Promote Initial PRMINIT At the beginning of Promote before any verification or processing
Exit occurs
Promote Verify PRMVFY or At the end of the Verification phase of Promote, but before the
Exit PRMEXT1 Copy and Purge steps are processed
Promote Copy Exit | PRMCOPY or At the end of the Copy phase of Promote, but before the Purge
PRMEXT2 step is processed
Promote Purge PRMPURGE or | At the end of Promote after the Verification, Copy, and Purge
Exit PRMEXT3 phases have all been completed
Audit/Version AVDVFY After the input parameters have been verified for an audit record
Delete Verify Exit and version, but before the record is deleted
Audit/Version AVDNTF After the audit record has been deleted
Delete Notify Exit
Delete Initial Exit | DELINIT - By the Delete from Group utility, before delete processing begins
« By the DELGROUP service, before delete processing begins
Delete Verify Exit | DELVFY - By the Library utility, after the input parameters have been
verified but before the member is deleted
« By the DELETE service, after the input parameters have been
verified but before the member is deleted
Delete Notify Exit | DELNTF

- After delete processing has completed for the Delete from Group
utility or DELGROUP service

- After delete processing has completed for the Library Utility
Delete option, or the DELETE service

B4 z/0S: z/OS ISPF SCLM Guide and Reference

Specify the change code verification routine

Specify the change code verification routine

SCLM provides three exits you can use for verifying change codes, integrating with change management
systems, or practically any other Edit, Migrate, Save, or Store processing you might want to perform:

» The Verify Change Code exit (CCVFY) enables you to verify a change code, a language, a user id, or
other values. The exit routine is invoked at Edit verification and SPROF processing. It is invoked during
SPROF processing when either the language or the change code has changed. A blank change code is
acceptable. A nonzero return code from the exit routine stops processing immediately.

« The Save Change Code exit (CCSAVE) occurs before SCLM writes accounting data to the accounting
data set for Edit, Migrate, Save, or Store processing. The routine is invoked during Save. This includes
Edit save processing, the Migrate Utility, and the EDIT, STORE, SAVE, and MIGRATE services. A blank
change code is acceptable. A nonzero return code from the exit routine stops processing immediately.

« The Change Code Verification exit (VERCC) was superseded by CCVFY. Like CCVFY it can be used to
verify change records. A nonblank change code is required. If you supply this routine to SCLM, it is used
by the SCLM Editor, Migration, and Import utilities, as well as the EDIT, IMPORT, MIGRATE, SAVE, and
STORE services.

When the VERCC routine is invoked just before the edit, SCLM stores the return code and allows the edit
to begin. If the VERCC routine has set a nonzero return code, the VERCC routine will be invoked again
when the member is saved. When a VERCC routine fails during a save, you have two options:

— You can use the CREATE edit command to make a non-SCLM-controlled copy of the editing session
and then use the migrate utility to bring the member back under SCLM control.

— You can use SPROF from SCLM Edit to change or add the change code.

You can specify any or all of these routines for your project. If you specify a VERCC exit and a CCVFY or
CCSAVE exit routine, the VERCC exit routine is invoked first. The CCVFY or CCSAVE exit routine is only
invoked if the VERCC exit completes successfully. The exception is during SPROF processing where the
CCVFY exit routine is called without first invoking the VERCC exit routine when only the language has
changed.

All three of these exit routines are invoked in the same way.

SCLM passes a string of up to eight parameters separated by commas. The parameter list can include one
list of user-specified options followed by up to seven SCLM parameters (see Table 8 on page 55).
Register 1 contains the address of the input data. The first halfword of the input data is the length of the
input string. Immediately following the halfword length is the input parameter string. The return code
from the routine is the only parameter passed back. The return code is returned in Register 15. SCLM
allows a member to be saved only if it receives a return code of O from the exit routine. SCLM informs you
if it detects a nonzero return code.

A project can use any combination of the parameters to determine whether an update should be
permitted. Table 8 on page 55 explains the format and description of the parameters passed from SCLM
to all change code verification routines.

Table 8. Initial and Save Change Code Exit Routine Parameters

Parameter Description

OPTION LIST Up to 255-character (including delimiters) parameters specified on the FLMCNTRL
macro using the CCVFYOP for options to the verify change code exit routine and
CCSAVOP for those passed to the save change code exit routine. Delimit this string
so that the SCLM parameters that follow can be identified by the exit routine.

GROUP The 8-character name of the group in which the member is being created or
modified (capitalized, left-aligned, blank-padded).

TYPE The 8-character name of the member type being created or modified (capitalized,
left-aligned, blank-padded).

Chapter 2. User exits 55

Specify the change code verification routine

Table 8. Initial and Save Change Code Exit Routine Parameters (continued)

Parameter Description

MEMBER The 8-character name of the member that is being created or modified (capitalized,
left-aligned, blank-padded).

LANGUAGE The 8-character name of the language specified for the member (capitalized, left-
aligned, blank-padded).

USERID The 8-character user ID of the developer performing the modification (capitalized,
left-aligned, blank-padded).

AUTHCODE The 8-character authorization code for the member (capitalized, left-aligned, blank-
padded).

CHANGE CODE The 8-character change code that has been entered (capitalized, left-aligned,
blank-padded).

Change code verification routine example

The following example shows a simple program written in REXX to perform minimal verification. This
routine verifies that the change code entered on the edit panel, or on the SPROF screen exists in a change
code verification file. A return code of 0 indicates that the change code is valid. A return code of 8
indicates that the change code failed verification. The example assumes that the option list is empty.

Figure 22 on page 57 calls the REXX Parse function to separate the string of input parameters. The
example then allocates the verification file and loops through the lines in the file until a matching change
code is found. If one is found the program is left immediately, otherwise a return code of 8 tells SCLM to
fail verification.

56 z/0S: z/OS ISPF SCLM Guide and Reference

Specify the Build and Promote User Exit routines

[% REXX deskskokok s sk ke ok ke e s sk ok oke ok e e ook ok ok ke e e ook ok ok ke e ook ok ke e ook ok ok ok ke ook ok ok ok e ook ok ok ok ok o /
/* CCVERIFY - CHANGE CODE VERIFICATION USER EXIT */
/***/
/* INPUTS: */
/* PARMS - */
/* OPTION LIST - OPTIONS LIST (IF SPECIFIED ON FLMCNTRL). */
/* GROUP - GROUP WHERE THE CHANGE IS BEING MADE. */
/* TYPE - TYPE CONTAINING THE MEMBER BEING CHANGED. */
/* MEMBER - MEMBER BEING CHANGED. */
/* LANGUAGE - LANGUAGE OF MEMBER BEING CHANGED. */
/* USERID - USER ID PERFORMING THE CHANGE. */
/* AUTHCODE - AUTHORIZATION CODE OF THE MEMBER. */
/* CHANGE CODE - CHANGE CODE BEING USED FOR THE CHANGE. */
e /
/* OUTPUTS: */
/* RETURN_CODE - RETURN CODE */
/* © - CHANGE CODE IS VALID. */
/* 8 - CHANGE CODE IS INVALID. */
/* 16 - CHANGE CODE FILE OPEN ERROR */
e /
/* PROCESS: */
/* THIS PROGRAM VERIFIES THAT THE CHANGE CODE ENTERED FOR THE */
/* MEMBER MATCHES ONE ON A VALID CHANGE CODE FILE */
/***/

ARG pazrm /* Parse arguments into variable parm x*/

PARSE UPPER VAR parm group ',' type ',' member ',' lang ',',

userid ',' authcode ',' ccode

group = Strip(group,'T")

type = Strip(type,'T")

member = Strip(member, 'T")

lang = Strip(lang,'T")

userid = Strip(userid,'T")

authcode = Strip(authcode,'T")

ccode = Strip(ccode,'T")

Address TSO "ALLOC FI(CCODEDS) DA('SSP.SCLM.CCIDVAL') SHR"
"EXECIO = DISKR "CCODEDS" (STEM ccline. FINIS)"

If rc <> 0 Then do
Say 'Error reading change code file'
Exit (16)

End

Address TSO "FREE FI(CCODEDS)"

Do I =1 To ccline.O

If SUBSTR(ccline.I,1,8) = ccode then Exit (0)
End
Say "Invalid change code"

Exit (8)
Figure 22. Change Code Verification User Exit
This exit will be executed by specifying the following FLMCNTRL macro in the project definition:

FLMCNTRL ACCT=SSP.ACCOUNT.FILE,
MAXVIO=50000,
CCVFY=CCVERIFY,
CCVFYDS=SSP.PROJDEFS.REXX,
CCVFYCM=TSOLNK

OO0

Specify the Build and Promote User Exit routines

Two user exits can be specified for build. SCLM invokes the Build Initial user exit before any build
processing begins. The Build Notify user exit is invoked at the end of a build.

Four user exits can be specified for promote. SCLM invokes the Promote Initial user exit before any
promote processing begins. SCLM invokes the Promote Verification user exit, the Promote Copy user exit,
and the Promote Purge user exit routines at the end of the promote verification, copy, and purge phases,
respectively.

Chapter 2. User exits 57

Specify the Build and Promote User Exit routines

Build and promote user exits are defined to the project definition using the following parameters on the
FLMCNTRL macro.

Build Initial User Exit
BLDINIT

Build Notify User Exit
BLDNTF or BLDEXT1 (old format)

Promote Initial User Exit
PRMINIT

Promote Verify User Exit
PRMVFY or PRMEXT1 (old format)

Promote Copy User Exit
PRMCOPY or PRMEXT2 (old format)

Promote Purge User Exit
PRMPRURGE or PRMEXT3 (old format)

Build and Promote User Exit routine requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine, followed by a string of
up to eleven parameters separated by commas. The parameter list can include one list of user-specified
options followed by up to ten SCLM parameters (see Table 9 on page 58). The address of this input data
is contained at the address stored in register 1. The first halfword of the input data is the number of
characters comprising the input data string. Immediately following this halfword length is the input
parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A return code of zero is
considered to be successful and processing continues. In most situations a nonzero return code from the
user exit routine causes build or promote to end with a return code 8. Whether or not processing
continues after the user exit depends on the return code value passed back by the user exit routine and
the exit routine being invoked. Nonzero return code values from user exit routines are handled in the
following ways:

« Both the Build Notify user exit (BLDNTF) and the promote purge phase user exit (PRMPURGE) can return
any value as processing has already been completed at the time the exit is invoked. SCLM will, however,
set a return code of 4 (in the case of BLDNTF) or 8 (in the case of PRMPURGE) for the final SCLM return
code if a nonzero return code is set in the user exit.

= Any nonzero value returned by the Build Initial user exit (BLDINIT) or the Promote Initial user exit
(PRMINIT) causes processing to stop.

- The processing that occurs after the promote verification phase user exit (PRMVFY) has been invoked
depends on the promote mode in effect. In conditional mode, a return code greater than 4 causes
promote processing to stop. In unconditional mode, any return code other than 20 allows promote
processing to continue.

« The processing that occurs after the Promote Copy user exit (PRMCOPY) has been invoked depends
only on the return code value returned. Any return code other than 20 allows normal promote
processing to continue.

Table 9 on page 58 explains the format and description of the parameters passed from SCLM to all build
and promote user exits.

Table 9. User Exit Parameters

Parameter Description

OPTION LIST Up to 255 characters, including delimiters (blank padding is not performed for this
parameter). Parameter is specified in the FLMCNTRL macro using macro
parameters BLDINIOP, BLDNTFOP, PRMINIOP, PRMVFYOP, PRMCPYOP, and
PRMPRGOP. Delimit this string so that the SCLM parameters that follow can be
identified by the user exit routine.

B8 z/0S: z/OS ISPF SCLM Guide and Reference

Specify the Build and Promote User Exit routines

Table 9. User Exit Parameters (continued)

Parameter Description

XXXXXXXX An 8-character literal value indicating the exit type (capitalized, left-aligned, blank-
padded). Valid types are:

BINITIAL
Build Initial (BLDINIT)

BUILD
Build Notify (BLDNTF)

PINITIAL
Promote Initial (PRMINIT)

PVERIFY
Promote Verify (PRMVFY)

PCOPY
Promote Copy (PRMCOPY)

PPURGE
Promote Purge (PRMPURGE).

PROJECT The 8-character name of the project (capitalized, left-aligned, blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-aligned, blank-
padded).

USERID The 8-character value of the user's logon ID (capitalized, left-aligned, blank-
padded).

FROM GROUP The 8-character name of the group (capitalized, left-aligned, blank-padded). The
group is the "from group" for the promote and the "build group" for the build.

TYPE The 8-character name of the type (capitalized, left-aligned, blank-padded).

MEMBER The 8-character name of the member (capitalized, left-aligned, blank-padded).

SCOPE The 8-character name of the scope (capitalized, left-aligned, blank-padded). Valid
scopes are as follows:

Build scope
Limited, normal, subunit, extended.

Promote scope
Normal, subunit, extended.

MODE The 13-character name of the mode (capitalized, left-aligned, blank-padded). Valid
modes are as follows:

Build mode
Forced, conditional, unconditional, and report only.

Promote mode
Conditional, unconditional, and report.

TO GROUP The 8-character name of the group (capitalized, left-aligned, blank-padded). The
group is the "to-group" for the promote exit routines. This parameter is blank for the
build exit routine.

Build allocates the following ddnames for internal use: BLDEXIT; BLDLIST; BLDMSGS; BLDREPT

Promote allocates the following ddnames for internal use: COPYERR; PROMEXIT; PROMMSGS;
PROMREPT

Use of these names in user exit routines can cause conflicts. At the end of an exit routine, free only those
ddnames explicitly allocated by the exit routine.

Chapter 2. User exits 59

Build and Promote User Exit output data sets

Build and Promote User Exit output data sets

If you specify a Build Notify or Promote Verify, Promote Copy, or Promote Purge user exit routine, SCLM
generates a sequential data set containing a record for each member changed or verified by build or
promote. This data set is not generated for the Build Initial or Promote Initial user exits. Verified members
are those eligible for promotion during the promote verification phase. Changed members for build are
those members produced due to translator calls. Changed members for promote are those members
copied or purged. SCLM puts new data in the data set for the invocation of each exit. User exit routines
can use the output data set when called, but the data set is rewritten for later exits and is deleted when
the SCLM processor ends.

The data definition names (ddnames) for build and promote exit output data sets are BLDEXIT and
PROMEXIT respectively. The attributes of the output data sets are the same for all the exit routines:

RECFM
FB

BLOCK SIZE
3200

LRECL
160

The format of the data set is the same for every exit. The data set contains three 8-character fields and
one 16-character status field. A blank separates all fields. The following list defines the fields generated
for every build and promote exit routine:

Table 10. User Exit Output Data Set Format

Field Description
GROUP Specifies the 8-character name of the group beginning in column 1.
TYPE Specifies the 8-character name of the type beginning in column 10.
MEMBER Specifies the 8-character name of the member beginning in column 19.
STATUS Specifies the status beginning in column 28.

BUILT/DELETED

Indicates if the member was built or if it was an obsolete output that was
deleted. This field is written by BLDNTF.

PROMOTABLE/NOT PROMOTABLE
Indicates if the member is eligible for promotion. This field is written by
PRMVEFY.

COPY SUCCESSFUL/COPY FAILED/COPY NOT ATTEMPTED
Indicates if the member was copied. This field is written by PRMCOPY. COPY

NOT ATTEMPTED can be issued when a promote to a hon-key group is
performed of a NOT PROMOTABLE member.

PURGE SUCCESSFUL/PURGE FAILED
Indicates if the member was purged. This field is written by PRMPURGE.

The following example shows build user exit output:

USER1 TYPE1 MEMBER1 BUILT
USER1 TYPE MEM1 BUILT
USER1 TYPE2 MEMBER5 BUILT

Specify the Audit Version Delete User Exit routine

There are two audit version delete exit points in SCLM: audit version delete verify (AVDVFY) and audit
version delete notify (ADVNTF). These exits are invoked when an audit record or an audit record and its

60 z/0S: z/OS ISPF SCLM Guide and Reference

Specify the Audit Version Delete User Exit routine

associated version are deleted using either the SCLM Audit and Version Utility, Version Selection dialog
(ISPF Option 10.3.8), or the VERDEL service interface.

The use of the audit version delete exits is optional. SCLM does not provide the user exit routines to be
invoked by these exit points.

The audit version delete verify exit is invoked after the initial verification of the inputs is done, but before
the actual deletion of the audit and version data takes place.

The audit version notify exit is invoked after the deletion of the audit and version data has been attempted
(in the case of a failure) or performed (when the deletion is successful).

These exits can be used to perform logging functions or additional verification, send notifications or
coordinate processing with non-SCLM tools.

Audit Version Delete User Exit routine requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine, followed by a string of
up to eleven parameters separated by commas. The parameter list can include one list of user-specified
options followed by up to ten SCLM parameters (see Table 11 on page 61). The address of this input data
is contained at the address stored in register 1. The first halfword of the input data is the number of
characters comprising the input data string. Immediately following this halfword length is the input
parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A return code of zero is
considered to be successful and processing continues. A nonzero return code from the first audit version
delete exit verify routine (AVDVFY) causes processing to end and the requested audit and version
information is not deleted. The second audit version delete notify user exit routine (AVDNTF) can pass
back any value in register 15 and processing continues because the delete has already been performed.

Table 11 on page 61 explains the format and description of the parameters passed from SCLM to all
audit version delete user exits.

Table 11. User Exit Parameters

Parameter Description

OPTION LIST Up to 255 characters, including delimiters (blank padding is not performed for this
parameter). Parameter is specified in the FLMCNTRL macro using macro
parameters AVDVFYOP and AVDNTFOP. Delimit this string so that the SCLM
parameters that follow can be identified by the user exit routine.

XXXXXXXX An 8-character literal value indicating the exit type (capitalized, left-aligned, blank-
padded). Valid types are:

ADVERIFY
Audit Version Delete Verify

ADNOTIFY
Audit Version Delete Notify

PROJECT The 8-character name of the project (capitalized, left-aligned, blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-aligned, blank-
padded).

USERID The 8-character value of the user's logon ID (capitalized, left-aligned, blank-
padded).

GROUP The 8-character name of the group (capitalized, left-aligned, blank-padded) for the
audit record or audit record and version.

TYPE The 8-character name of the type (capitalized, left-aligned, blank-padded) for the
audit record or audit record and version.

Chapter 2. User exits 61

Specify the Delete User Exit routine

Table 11. User Exit Parameters (continued)

Parameter Description

MEMBER The 8-character name of the member (capitalized, left-aligned, blank-padded)for
the audit record or audit record and version.

DATE The 10-character, multicultural support, formatted date with 4-character year for
the audit record or audit record and version.

TIME The 11-character time for the audit record or audit record and version. The format
for the time is HH:MM:SS.hh or HH:MM:SS,hh. In the format, HH is the hour from a
24-hour clock, MM is the minutes, SS is the seconds, and hh is the hundredths of a
second.

VERSION MEMBER The 8-character version member name (capitalized, left-aligned, blank-padded)

NAME indicates whether the requested audit record has an associated version. When an
associated version exists, this value is the same as the member name. This value is
blank when the requested audit record does not have an associated version.

Specify the Delete User Exit routine

There are three delete exit points in SCLM: an initial delete exit (DELINIT), a Delete Verify exit (DELVFY),
and a Delete Notify exit (DELNTF).

The initial delete exit is invoked only for the DELGROUP service or Delete from Group dialog (ISPF Option
10.3.9). It is invoked during initialization and before any processing is done. The "group" (for the
DELGROUP service only), "type", and "member name" values can contain pattern symbols. The purpose of
this exit is to enable verification for a certain level, for example, to ensure that a user is authorized to use
Delete from Group.

The Delete Verify exit is invoked for Library Utility Delete (ISPF Option 10.3.1) and the DELETE service. It
is invoked after the input parameters have been verified, but before any processing is performed.

The Delete Notify exit is invoked for Library Utility Delete, the DELETE service, and the DELGROUP service
and Delete from Group dialog. The exit is invoked after the delete has been attempted (in the case of
failure) or performed (when the deletion succeeds).

Delete User Exit Routine requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine, followed by a string of
up to ten parameters separated by commas. The parameter list can include one list of user-specified
options followed by up to nine SCLM parameters (see Table 12 on page 63). The address of this input
data is contained at the address stored in register 1. The first halfword of the input data is the number of
characters comprising the input data string. Immediately following this halfword length is the input
parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A return code of zero is
considered to be successful and processing continues. For the Delete Verify and Delete Initial exit
routines, any return code other than zero indicates failure and processing ends. In the case of the Delete
Notify exit, the delete has already been performed. SCLM will, however, set a return code of 4 for the final
SCLM return code if a nonzero return code is set in the user exit.

Table 12 on page 63 explains the format and description of the parameters passed from SCLM to all
delete user exits.

62 z/0S: z/OS ISPF SCLM Guide and Reference

Specify the Delete User Exit routine

Table 12. User Exit Parameters

Parameter

Description

OPTION LIST

Up to 255 characters, including delimiters (blank padding is not performed for this
parameter). Parameter is specified in the FLMCNTRL macro using macro
parameters DELINTOP, DELVFYOP, and DELNTFOP. Delimit this string so that the
SCLM parameters that follow can be identified by the user exit routine.

XXXXXXXX

An 8-character literal value indicating the exit type (capitalized, left-aligned, blank-
padded). Valid types are:

DGINIT
Initial Delete

DVERIFY
Verify delete exit invoked for the DELETE service or Library Utility Delete

DNOTIFY
Notify delete exit invoked for the DELETE service or Library Utility Delete

DGNOTIFY
Notify delete exit invoked for the DELGROUP service or Delete from Group
dialog

PROJECT

The 8-character name of the project (capitalized, left-aligned, blank-padded).

LIBDEF

The 8-character name of the project definition (capitalized, left-aligned, blank-
padded).

USERID

The 8-character value of the user's logon ID (capitalized, left-aligned, blank-
padded).

GROUP

The 17-character name of the group (capitalized, left-aligned, blank-padded).

TYPE

The 17-character name of the type (capitalized, left-aligned, blank-padded).

MEMBER

The 17-character name of the member (capitalized, left-aligned, blank-padded).

FLAG

The 8-character delete flag (capitalized, left-aligned, blank-padded). Valid delete
flags are ACCT, BMAP, TEXT, and OUTPUT. This value is always TEXT for a Library
Utility Delete. OUTPUT is valid only for Delete from Group.

MODE

The 8-character name of the mode (capitalized, left-aligned, blank-padded). Valid
modes are EXECUTE and REPORT. This value is valid only for Delete from Group. A
blank value is passed for the DELETE service and Library Utility Delete.

Delete from Group allocates the following ddnames for internal use: DGEXIT; DGLIST; DGMSGS;

DGREPT

Use of these names in a delete user exit routine can cause conflicts. At the end of an exit routine, free only
those ddnames explicitly allocated by the exit routine.

Delete User Exit output data set

When a Delete from Group is performed and you specify a delete notify user exit routine, SCLM generates
a sequential data set containing a record for each member for which a delete is requested. SCLM puts
new data in the data set for the invocation of each exit. The Delete Notify user exit routine can use the
output data set when called, but the data set is rewritten for later exits and is deleted when the SCLM

processor ends.

The default data definition name (ddname) for the delete exit output data set is DGEXIT. The attributes of
the output data set are:

RECFM
FB

Chapter 2. User exits 63

User exit routine example

BLOCK SIZE
3200

LRECL
160

The data set contains the following fields. A blank separates all fields.

Table 13. User Exit Output Data Set Format

Field Description

DATA TYPE Specifies the 8-character name of the type of data. This is equivalent to the section
headings in the Delete from Group report. Valid types are MEMBER or BUILDMAP.
MEMBER is used when an accounting record or an accounting record and PDS
member are deleted.

GROUP Specifies the 8-character name of the group beginning in column 9.

TYPE Specifies the 8-character name of the type beginning in column 18.

MEMBER Specifies the 8-character name of the member beginning in column 27.

STATUS Specifies the 19-character status beginning in column 36. Valid values are:
DELETE SUCCESSFUL

Indicates the requested data was successfully deleted.

DELETE FAILED
Indicates an error occurred and the delete failed.

DELETE WARNING
Indicates a warning was issued. The requested data either did not exist or was
successfully deleted.

NOT ATTEMPTED
Indicates that Delete from Group was done in report mode. The delete was not
attempted.

OUTPUT Specifies the 1-character OUTPUT indicator beginning in column 56. If the
requested data was a build output, then this column contains an asterisk (*).

The following example shows the delete user exit output that is generated when a Delete from Group is
requested:

MEMBER USER1 TYPE1l MEMBER1 DELETE SUCCESSFUL *

User exit routine example

Figure 23 on page 65 is an example program written in REXX that performs simple Promote Copy user
exit activity. This routine reads the promote exit file, and based on the types of the members being
promoted, copies the member to a library outside of SCLM's control. The exit then passes a return code of
zero (0) to SCLM.

64 z/0S: z/OS ISPF SCLM Guide and Reference

User exit routine example

/* REXX %/

/* PROMCPY1 - PROMOTE COPY USER EXIT */
/**/
/* INPUTS: */
/* PARMS - */
/* EXTYP - An 8-character literal value indicating the exit type */
/* Valid types are: */
/* BINITIAL Build Initial (BLDINIT) */
/* BUILD Build Notify (BLDNTF) */
/* PINITIAL Promote Initial (PRMINIT) */
/* PVERIFY Promote Verify (PRMVFY) */
/* PCOPY Promote Copy (PRMCOPY) */
/* PPURGE Promote Purge (PRMPURGE) . */
/* PROJ - The 8-character name of the project */
/* PRJIDF - The 8-character name of the project definition */
/* TSOUID - The 8-character value of the user's logon ID */
/* FROMGRP - From Group or Build Group */
/* TYPE - Type containing the member being promoted. */
/* MEMBER - Member being promoted. */
/* SCOPE - The 8-character name of the scope */
/* Valid scopes are as follows: */
/* Build scope Limited, normal, subunit, extended. */
/* Promote scope Normal, subunit, extended. */
/* MODE - The 13-character name of the mode */
/* Valid modes are as follows: */
/* Build mode Forced, conditional, unconditional, */
/* and report only. */
/* Promote mode Conditional, unconditional, and report. */
/* TOGRP - The 8-character name of the group; */
/* blank for build exit */
/* */
[RS S AFAFHRE R RS SAFAFAFH R RS S SRR R R RS S A TR TSR RSKS /
/* OUTPUTS: */
/* RETURN_CODE - RETURN CODE */
/* O - All copies performed successfully. */
/* 16 - All or some copies not performed successfully */
/* 32 - Input or Output files can not be initialized */
e /
/* PROCESS: */
/* THIS PROGRAM COPIES LOAD MODULES TO THEIR EXECUTION DATASET */
/* */
/**/
ARG PARM

/* Initialize passed parameters */
Call INIT

/* Only process when to group is production */

If togrp <> 'PROD' then exit ©

Figure 23. Promote User Exit (Part 1 of 3)

Chapter 2. User exits 65

User exit routine example

/* read exit file */

"execio x diskr PROMEXIT (stem extline. finis)"

/* Process each line of the exit file */

Do i = 1 to extline.® /* For all lines in stem variable */
/* Extract variables from a line out of the exit file */

parse upper var extline.i eogroup 10 eotype 19 eomember 28 eostatus

eogroup = STRIP(eogroup)

eotype = STRIP(eotype)

eomember= STRIP(eomember)

eostatus= STRIP(eostatus)

/* If member ok continue */

If eostatus = 'COPY SUCCESSFUL' then
Call Process_Member

End

EXIT max_zxc

INIT:

/* Parse out variables passed to the exit routine and strip blanks */
PARSE UPPER VAR parm extyp ',' proj ',' prjdf ',' tsouid ',',
fromgrp ',' type ',' member ',' scope ',' mode ',' togrp
extyp = strip(extyp)

proj = strip(proj)

prjdf = strip(prjdf)

tsouid = strip(tsouid)

fromgrp = strip(fromgrp)

type = strip(type)

member = strip(member)

scope = strip(scope)

mode = strip(mode)

togrp = strip(togrp)

max_xc =0

return

Process_Member:

/* Process each member in the exit file */
/* If the member type is to be processed setup 'TO' dataset */
/> 'TO' dataset for the copy is a preallocated library */
Select
When eotype = "LOADLIB" then Do
outdsn = "'SYS2.LOADLIB'"
Call Perform_Copy
End
When eotype = "LOADCICS" then Do
outdsn = "'SYS2.CICSLOAD""
Call Perform_Copy
End
Otherwise
nop
End
Retuzrn

Figure 24. Promote User Exit (Part 2 of 3)

66 z/0S: z/OS ISPF SCLM Guide and Reference

User exit routine example

Perform_copy:
/* Initialize the FROM and TO datasets and perform copy */

indsn = proj"."togrp"."eotype

Address ISPEXEC "LMINIT DATAID(FROMDSN) DATASET("indsn")"

If rc <> 0 then do
Say "Error on LMINIT for FROM dataset indsn zreturn code" zc
exit 32

End

Address ISPEXEC "LMINIT DATAID(TODSN) DATASET ("outdsn")"

If rc <> 0 then do
Say "Error on LMINIT for TO dataset indsn return code" rc
exit 32

End

/* Copy member from SCLM prod into live dataset */
Address ISPEXEC "LMCOPY FROMID("fromdsn") FROMMEM("eomember")
TODATAID("todsn") TOMEM("eomember") REPLACE"

If rc <> 0 then do /* If error on the Copy */
Say "Member" eomember "can not be copied to" outdsn
max_rc = 16

End

Else /* Member was copied successfully */
Say eomember "has been copied to" outdsn

Return
Figure 25. Promote User Exit (Part 3 of 3)

The program uses the ISPF library management services to perform the copy and as such must be
invoked in SCLM in one of two ways:

1. Using the ISPLNK call method as shown below:

PRMCOPY=SELECT,
PRMCPYCM=ISPLNK,
PRMCPYOP="'CMD (PROMCPY1, ',

[eXeXe]

2. From a driver exit that uses a call method of TSOLNK as follows:

Address ISPEXEC 'SELECT CMD(PROMCPY1' parm ')'

Chapter 2. User exits 67

User exit routine example

68 z/0S: z/OS ISPF SCLM Guide and Reference

Splitting project VSAM data sets

Chapter 3. Additional project manager tasks

In addition to the tasks described in Chapter 1, “Defining the project environment,” on page 3, project
managers can perform other tasks associated with defining and maintaining SCLM projects. This chapter
describes other areas of responsibility in which project managers are involved. These include:

« Splitting VSAM data sets
Backing up and recovering the project environment

« Synchronizing and maintaining accounting data sets

Modifying the Delete from Group dialog interface
- Implementing Package Backout

Splitting project VSAM data sets

You might need to split the project VSAM data sets into multiple data sets because of security
requirements, data set size, performance or changes in the way the project is being developed. By using
multiple VSAM data sets in conjunction with flexible data set naming, cross-project support (for example,
sharing common code) can be achieved.

The following steps make up the basic process for splitting project VSAM data sets:

1. Decide how you want to split the data sets. SCLM allows the VSAM data sets to be split on group
boundaries.

2. Back up the data from the existing VSAM data sets for those groups using the new VSAM data sets.
There are two ways to back up the data:

a. You can use the SCLM export utility to export the contents of each group to the new data set.
Because the Import utility deletes the contents of the export data set upon a successful completion
of the import, you should make a backup of the export VSAM data sets using the IDCAMS
reproduction utility (REPRO). By using this method, you do not need to update the contents of the
PDS data sets. You only need to copy members from those groups that will be using the new VSAM
data set. This method does not copy the audit records.

Note: Using the REPRO function of the IDCAMS utility, you can split the audit data base at any point
to create any number of smaller audit data bases. In order to use these smaller audit data bases,
create alternate project definitions that specify the newly created audit data bases.

b. You can use the IDCAMS REPRO utility to make a copy of each of the VSAM data sets used by the
project. This method has the advantage of creating a backup of the project VSAM data sets. All
records are copied to the new VSAM data set. While having the copies for all groups in the new
VSAM data set is not a problem for SCLM, it does increase the size of the data set. These records
can be deleted by setting up an alternate project definition that points only to the new VSAM data
set and using the DELGROUP service to delete the groups that are not needed in that data set.

3. Make a backup copy of the project definition. This backup copy is needed to delete the data from the
original VSAM data sets.

4. Update the project definition to add an FLMALTC macro for the new data sets and ALTC parameters on
the groups that will be using those data sets.

5. Allocate the new VSAM data sets.
6. Assemble the new project definition.

7. Restore the data for the new VSAM data set from backup. How you do this depends on what method
you used to back up the data:

a. If you used the Export utility, use the Import utility to restore the data to the new VSAM data sets.

© Copyright IBM Corp. 1990, 2021 69

Backing up and recovering the project environment

b. If you used the IDCAMS REPRO utility, use the REPRO utility to restore the data. You can do this
before assembling the new project definition because it does not use any SCLM services.

8. Test the new project definition. Here are some suggestions for testing the new project definition:
« Edit a member at the modified group. Create a new member, and also edit an existing member.
« Run a build from the modified group.
« Promote from the modified group.

9. Delete data from the existing VSAM data set for those groups that reference the new VSAM data set.
You can do this by using a backup copy of the old project definition and the Delete from Group utility
for each group that was moved.

If you used the method of promoting to a new group, this step is not needed.

Backing up and recovering the project environment

The important point in backing up and recovering the project environment is that all the data remains
synchronized. The project partitioned data sets contain related data, and the control data sets contain the
control information for the PDS members. Thus, backing up and restoring the project environment means
that the project partitioned data sets and the control data sets must be backed up and restored together.

The recommended procedure for backing up the project environment is to run a background job when no
one is working within the hierarchy. You should determine how often to run this job. Remember that the
topmost group of the hierarchy (the production group) usually contains most of the software and is
usually frozen. You should back up the topmost groups whenever new data is promoted into the topmost
groups. The lower groups in the hierarchy are subject to change much more often, and the code in the
development groups usually changes daily. Perform backups for the lower groups based on your project's
requirements. Again, remember that you must back up an entire group as a unit; this includes the project
partitioned data sets and the control data sets.

Be careful when recovering a project environment. When you restore a group, it returns to the version that
was in effect when you backed it up. This change can affect code below the restored group. Also the
control data sets reflect the status of the group when it was backed up.

Synchronizing accounting data sets

The SCLM FLMCNTRL and FLMALTC macros allow you to select dual accounting data sets to be
maintained using the ACCT and ACCT2 parameters. If an unrecoverable problem occurs with one of the
primary accounting data sets, use the following JCL to restore the primary accounting data set.

//jobname JOB (wkpkg,dpt,bin), 'name’
/

*
//* JCL TO RESTORE THE PRIMARY ACCOUNTING DATA SET FROM THE *
//* SECONDARY ACCOUNTING DATA SET. *
//* *
//* SPECIFY THE UNCORRUPTED DATA SET AS YOUR INPUT DATA SET *
//* *
[[*kkkkdokkkkk ok ok ok ko ok ok ok ok s ok ok ok ok ko sk ok ok ok ok ok s ok ok ok ko ok ok ok ok ok ok ok ko ko ok ok ok ko
//STEP1 EXEC PGM=IDCAMS

//INPUT DD DISP=0LD,DSN=PR0OJ1.ACCOUNT2.FILE

//OUTPUT DD DISP=0LD,DSN=PR0OJ1.ACCOUNT.FILE

//SYSPRINT DD SYSOUT=H

//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)

/*

/!

Figure 26. JCL to Restore the Primary Accounting Data Set

You can also use this JCL to initialize a backup data set for a project that is currently running under SCLM.
If problems occur with the backup data set, SCLM issues warning messages. You must restore the backup
data set when problems occur.

70 z/0S: z/OS ISPF SCLM Guide and Reference

Maintaining accounting data sets

Maintaining accounting data sets

When groups or types are removed from the project definition, some accounting information from those
groups or types can remain in the VSAM data sets for that project. In order to avoid having records that
are no longer useful in the VSAM data sets, you should use the DELGROUP service to remove the VSAM
records for any groups or types that are being removed from the project definition. This step should be
performed before the groups and types are removed from the project definition.

If groups or types have been previously removed from the project definition, you can create an alternate
project definition that includes a definition for the removed groups and types. This project definition can
be used with the DELGROUP service to delete any remaining VSAM records.

Modifying the Delete from Group dialog interface

Given the power of Delete from Group, there are some restrictions in the dialog interface. Explanations for
the restrictions and instructions for modifying the dialog to remove such restrictions follow.

The Group field is restricted to disallow patterns. To remove this restriction:

1. Edit the panel FLMDDG#P. It is recommended that you update the DTL version instead of the
generated panel to avoid losing the changes if the panel is regenerated. See z/0S ISPF Dialog Tag
Language Guide and Reference for more information.

2. Replace the line:
<dtafld datavar=DGLEVEL usage=both
entwidth=8 pmtwidth=12 >&lib_prompt;
with the lines:

<dtafld datavar=DGLEVEL usage=both
deswidth=41 entwidth=9 pmtwidth=12 >&lib_prompt;
<dtafldd>(Pattern can be used)

or with the lines:

<dtafld datavar=DGLEVEL usage=both
deswidth=41 entwidth=17 pmtwidth=12 >&lib_prompt;
<dtafldd>(Pattern can be used)

depending upon how you resolve the next restriction. They should be consistent if patterns are
allowed.

3. Edit the imbed FLMZDG#P, and replace the line:

VER (&DGLEVEL , NB, NAME)

with the line:

VER (&DGLEVEL , NONBLANK)

The Type and Member fields are restricted to 9 characters; FLMCMD and FLMLNK allow up to 17
characters. To remove this restriction:

1. Edit the panel FLMDDG#P. It is recommended that you update the DTL version instead of the
generated panel to avoid losing the changes if the panel is regenerated. See z/0S ISPF Dialog Tag
Language Guide and Reference for more information.

2. Replace the lines:

<dtacol entwidth=8 pmtwidth=12
deswidth=49 fldspace=11 >

Chapter 3. Additional project manager tasks 71

Implementing package backout

with the lines:

<dtacol entwidth=17 pmtwidth=12
deswidth=41 fldspace=11 >

The Delete mode always defaults to Report when the panel appears. To remove this restriction, remove
the following lines from the FLMZDG#P panel imbed:

&DMODE = 'REPORT'
&DMODEV = '2'

Implementing package backout

This topic describes how to implement package backout.

1. Determine the TYPE (for example, ARCHPACK) to hold the package high-level architecture members. If
required allocate the appropriate data sets.

2. Update the project definition for this type to have the parameter ISAPACK=Y on the FLMTYPE macro.
When an architecture member using this type is promoted, the package backout is invoked.

3. Determine the types of files (such as Object, load libraries) that are to be backed up during the
promotion of a package high-level architecture member. The Project definition for these file TYPES
should be updated to specify the BACKUP=Y on the FLMTYPE macro.

4. Determine at which groups (for example, production) the package backout is to be implemented, and
the group that the members will be backed up to.

In the Project definition for these groups, use the BKGRP=group_name parameter on the FLMGROUP
macro to specify the group to which the members will be backed up. These new backup groups must
be added to the project definition, so add an FLMGROUP macro for them. Make sure the group is key.
Use the group that is being backed up as the PROMOTE= group.

For example, to back up RELEASE into a group called BACKGRP:

BACKGRP FLMGROUP AC=(P),KEY=Y,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(P),KEY=Y,BKGRP=BACKGRP

5. Determine if member-level restore is to be implemented to allow individual members to be restored
instead of an entire package. If it is required, update the FLMGROUP macro to have BKMBRLVL=Y.

6. Create the backup libraries for the TYPES you have specified with BACKUP=Y for the groups for which
package backout has been specified. The data set names will have the format
project_name.group_name.ds_type, where group_name is the value specified on the BKGRP=
parameter for each group. Allocate the backup libraries with the same attributes as the libraries that
are being backed up.

7. Determine the File type to contain the package backout details. Add the parameter PACKFILE=Y to the
Project definition for this type. The PACKFILE flag must only be specified on one FLMTYPE in the
project definition, for example PACKFILE FLMTYPE PACKFILE=Y

Create a library of this type for the groups for which package backout has been specified. The data set
names will have the format project_name.group_name.ds_type, where group_name is the value
specified on the BKGRP= parameter for each group and ds_type is the type on the FLMTYPE macro
with PACKFILE=Y. Allocate this data set with LRECL=130 and RECFM=FB.

8. Determine if package reuse is to be used. If so set 'REUSEDAY=nnnn' on the FLMTYPE macro that has
the PACKFILE=Y specified.

9. Reassemble and link the project definitions.

Figure 27 on page 73 shows a sample project definition that allows for package backout.

72 z/0S: z/OS ISPF SCLM Guide and Reference

Implementing package backout

ARCHDEF FLMTYPE
SOURCE FLMTYPE EXTEND=MACROS
MACROS FLMTYPE

LIST FLMTYPE

ARCHPACK FLMTYPE ISAPACK=Y

0BJ FLMTYPE BACKUP=Y

LMAP FLMTYPE

LOAD FLMTYPE BACKUP=Y

PACKFILE FLMTYPE PACKFILE=Y

DEV1 FLMGROUP AC=(P,A,LONGNAME) ,KEY=Y, PROMOTE=TEST
DEV2 FLMGROUP AC=(P,A),KEY=Y,PROMOTE=TEST

TEST FLMGROUP AC=(P),KEY=Y,PROMOTE=RELEASE

BACKGRP FLMGROUP AC=(P),KEY=Y,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(P),KEY=Y,BKGRP=BACKGRP

Figure 27. Sample project definition

Chapter 3. Additional project manager tasks 73

Implementing package backout

74 z/0S: z/OS ISPF SCLM Guide and Reference

Prerequisites for existing hierarchies

Chapter 4. Converting projects to SCLM

To convert an existing project to an SCLM-controlled project, bring the project groups under control one at
a time beginning with the top layer of the hierarchy, which is the production (frozen) group, and work
downward. Most projects to be converted already exist in some kind of logical hierarchy. If all production
source code is stored in one logical place and code under development is stored elsewhere, you have at
least a two-layer hierarchy. Before migration can begin, you must place the source code to be converted
into partitioned data sets.

There are many advantages to using the preceding method. First, you can bring a project under SCLM
control in discrete steps, over a period of time. Second, SCLM can locate integrity problems in the existing
hierarchy and fix them systematically during the conversion process. Third, SCLM performs the conversion
using the same tools that developers use in the normal development process. Thus, you ensure
consistency within the hierarchy, and you become familiar with SCLM. Finally, from the conversion
process, you receive an indication of the performance that you can expect of SCLM during the
development process.

Prerequisites for existing hierarchies

The best time to begin the conversion process is when the components to be controlled are concentrated
in a small number of groups—for example, immediately following a software release. The following actions
help you prepare a hierarchy for the conversion process.

- Create the project definition to be used with the converted hierarchy. See Chapter 1, “Defining the
project environment,” on page 3, for details.

- Verify that all partitioned data sets to be controlled are available online. If the data is not in partitioned
data sets, allocate partitioned data sets by following “Step 5: Allocate the project partitioned data sets”
on page 12, and copy data from the existing data sets to the partitioned data sets.

« Delete all unnecessary data from the libraries being converted.

« If you intend to use non-key groups in the converted hierarchy, ensure that they do not contain any data
before conversion.

Create alternate project definitions

You need to create several alternate project definitions to complete the conversion process. Because the
SCLM migration utility can only run against development libraries, which are in the lowest layer of the
hierarchy, you need an alternate project definition for each layer of the proposed hierarchy. The first
alternate project definition you use defines only the topmost group. That group becomes a development
group. The second project definition defines the topmost group and those groups that promote into it, and
so on. You do not need to define non-key groups in the alternate project definitions you use for the
conversion process because they should not contain any members.

Create architecture definitions for the project

Although you can perform the conversion process without architecture definitions, their creation can
greatly simplify the conversion process as well as support future development needs. Define a set of
architecture members first for the code in the topmost group of the hierarchy. These architecture
members must reference only members that are present in the topmost group because only those
members are visible during the first group conversion.

To determine which architecture members you need, perform the following steps:

1. Determine whether all the build translators can use the default translator options in the language
definitions. If they can, you do not need compilation control architecture members.

© Copyright IBM Corp. 1990, 2021 75

Register existing PDS members with SCLM

2. Determine the contents of every load module to be controlled. The IEHLIST utility prints the names of
all objects in a load module.

3. Produce a linkage edit control architecture member for every load module, and reference each object
(actually compilable source members) with an INCLD statement. Use the INCL statement in place of
INCLD to reference compilation control architecture members if they are created above.

4. Produce high-level architecture members as needed to control any non-translatable data or data that
is not included in load modules.

5. Produce a high-level architecture member and reference each linkage edit control architecture
member and high-level architecture member defined above with an INCL statement.

The high-level architecture member created in Step 5 now defines, through its dependencies, the entire
application architecture.

After you create the architecture members for the topmost group, you might need to add modifications in
the lower groups of the hierarchy. Members that were added during the development process and were
not moved to the topmost group may require additional architecture members. You must introduce
architecture modifications in the group requiring the change. This action allows the architecture for the
hierarchy to match the members controlled in the hierarchy. See Chapter 11, “Architecture definition,” on
page 269 for a description of the process and syntax for defining architecture members.

Register existing PDS members with SCLM

Editable members and noneditable members are processed in separate and unique ways by SCLM.

Editable members, such as source members, are not created by the SCLM build function. Editable
members must be registered with SCLM through the migration utility. Both the language associated with
the member and a change code (only if you have a change code verification routine) are required as input
to the migration utility. TEXT can be used as the language of members that do not need to be compiled,
assembled, or processed, such as panels and messages. Call the migration utility for each library
containing editable members.

The SCLM Build function creates noneditable members. Object code, listings, and load modules are
examples of noneditable members. The SCLM build function must be called to create all of the
noneditable members to be tracked within the hierarchy. If all of the customization related to language
translators is complete and has been tested, run the build processor in the unconditional mode using the
topmost architecture member for your application. This unconditional build will identify all build errors
that exist. If errors are anticipated and the application is large, use architecture members with smaller
scopes. For example, use an LEC architecture member rather than an HL. Using the conditional mode of
the build processor causes processing to stop when a member containing an error is encountered.

The normal process is to migrate source members into SCLM and then generate the outputs using the
SCLM Build function. There may be occasions, however, where you would like to use SCLM to manage
object and load modules for which the source code no longer exists. There are two ways of doing this.

The first method uses a 'dummy' language definition with an FLMLANGL macro, but no FLMTRNSL
macros. An example of this is provided as member FLM@OBJ in the ISP.SISPMACS data set included with
SCLM. This language definition allows you to migrate object and load modules into SCLM as editable
members in the same manner that source modules are introduced.

Note: Special care must be taken when using versioning in a project that has stored object and load
modaules in this manner. SCLM will consider the members to be editable and will allow versioning to occur
if specified. This may cause errors in SCLM version processing. The second method is a better choice
when versioning is being used in the project.

The second method involves migrating the object and load modules into a temporary type and then using
the SCLM Build function to copy them to the target type. The SCLM build process will mark the copied
object and load modules as non-editable. This solution is a better choice for projects with versioning in
use. Member FLM@COPY in the ISP.SISPMACS data set can be used to store object modules into SCLM in
this manner. It can be modified for use with load modules. This language definition will migrate the
members into a temporary type as editable members. SCLM will allow the migrate because, like the

76 z/0S: z/OS ISPF SCLM Guide and Reference

Introducing fixes to the converted hierarchy

FLM@OBJ language definition, there is no FLMTRNSL macro with FUNCTN=PARSE and therefore no
parser will be invoked. The FLMTRNSL macro for the Build function calls IEBGENER to copy the modules
from one SCLM type to the other as non-editable outputs.

Introducing fixes to the converted hierarchy

During the conversion process, SCLM might discover integrity errors existing in the current development
hierarchy. If it encounters these errors in the topmost group of the hierarchy, the errors have an effect on
the rest of the conversion process. You can encounter two kinds of errors:

« Dependency errors for editable members. Errors can be caused when an included member or macro
cannot be found within the hierarchy. If you want the missing member tracked in the hierarchy, you
must copy the correct version of the included member to the group being converted. If you do not want
the missing member tracked in the hierarchy, define it to SCLM using the FLMSYSLB macro and the
FLMCPYLB macro in the language definition of the member.

« Compile errors, or any similar translator errors in any group, located during the build process. The errors
must be corrected before proceeding with the conversion. Use the listings produced by build to locate
and correct the errors. After making the correction rebuild the members that contained the errors.

Chapter 4. Converting projects to SCLM 77

Introducing fixes to the converted hierarchy

78 z/0S: z/OS ISPF SCLM Guide and Reference

Using multiple translators in a language definition

Chapter 5. Language definition considerations

SCLM can be tailored to support languages other than those listed in the examples provided with the
product. By creating a language definition as part of the project definition, you specify to SCLM the
languages that will be used for the project. Language definitions provide SCLM with language-specific
control information such as the language name and the definition of the language translators.

The language definition describes language-specific processing in two ways:

« From a data-flow perspective, the language definition specifies all data sets used as input to or output
from various SCLM processes such as Parse, Build, Promote, and Delete.

« From a procedural perspective, the language definition specifies the translators (for example, parsers or
compilers) that are invoked to process your SCLM-controlled data. The order in which those translators
are invoked and the options to be passed to the translators are defined in the language definition.

You must provide SCLM a language definition for each language (PL/I, COBOL, Link-Edit, and so on) that
you want SCLM to support. In most cases, you can make minor changes to sample SCLM language
definitions provided with ISPF.

A language definition consists of a collection of the following definitions:

« System library definitions
« Language identifier definition
Include set definitions

Translator definitions
Allocation definitions

« Copy library definitions

Because a macro exists for each of these definitions and because each macro accepts a number of
different parameters, you can specify a large variety of language definitions. The language definitions
provided with the product are examples that can serve as a reference in the construction of language
definitions for a specific application and environment.

To determine what modifications you can make to the language definition, become familiar with the
parameters of the language definition macros as documented in Chapter 21, “SCLM macros,” on page
487. Typically, to write a new language definition, you would copy an old language definition and then
modify it to meet your specific needs.

In the remainder of this chapter, several language definitions are examined more closely in order to
describe some of the implementations of language definitions. Topics discussed in this chapter include:

 Using multiple translators in a language definition

Invoking user-defined parsers
 Processing conditionally saved components

Specifying the location of included members

Tracking dynamic includes

Using input list translators.

Using multiple translators in a language definition

You can use the FLMTRNSL macro to define translators for a language. The parameters of the FLMTRNSL
macro define all the attributes needed to call a given translator. The FLMTRNSL FUNCTN parameter
defines the function or purpose for which a translator is called. SCLM uses translators for the following
functions:

© Copyright IBM Corp. 1990, 2021 79

Using multiple translators in a language definition

« Parsing source code to determine statistics and dependency information. SCLM calls these translators
when a member is saved in the editor or migrated (dialog function or MIGRATE service) or saved with
the SAVE service.

« Translating one form of code into another, for example:

— Source code to object code and listings
— Script input to a formatted document
— Object code to load modules

SCLM calls these translators during the build process.

- Verifying data. A verify translator performs validation in addition to the default SCLM validation. The
verify translator is invoked before the translation step (such as compiling and linking) of build, and
before the copy phase of promote.

« Copying data. SCLM calls these translators during the promote process. The data can be either PDS
members controlled directly by SCLM or non-PDS data that includes an intermediate form of
compilation units and external data identified to SCLM via a build translator.

 Purging data. SCLM calls these translators during the promote process. The data can be either PDS
members controlled directly by SCLM or non-PDS data that includes an intermediate form of
compilation units and external data identified to SCLM via a build translator.

The translators required for a language are language-specific. Some languages require parse and build
translators while others need parse, build, copy, and purge translators.

Most SCLM-supplied example language definitions have two translators defined. The first identifies the
parser to be invoked, and the second identifies the translator to be invoked during a build. Language
definitions can be created for the invocation of one or more translators during the parse, build, copy,
verify, or purge functions. For each of these functions, the translators are invoked in the order in which
they appear in the language definition. Within a function in the language definition, a translator can pass
data on to the next translator invoked by that function within the language definition. This capability
allows you to customize the SCLM product for unique processing requirements in your project.

When connecting SCLM translators in a language definition, make sure they are ordered so that they will
execute in the correct sequence. If used for build, you should order the preprocessing and compile steps
as you would in a CLIST or JCL.

If multiple-step language definitions specify more than one translator to be invoked during a build, make
sure the DDNAMEs for outputs to be copied into the project hierarchy are unique. If the same DDNAME is
used, only the outputs from the last translator will be copied to the hierarchy. For more information, refer
to “Using DDnames and DDname substitution lists” on page 100.

Figure 28 on page 81 shows a language definition that uses multiple translators. The DB2 preprocessor
(DSNHPC) creates a COBOL source data set using the SYSCIN ddname. The next translator, the COBOL II
compiler IGYCRCTL, reads in the SYSCIN data set.

Note that the receiving translator defines SYSCIN as IOTYPE=U, meaning that SYSCIN has already been
allocated in a previous translator step.

80 z/0S: z/OS ISPF SCLM Guide and Reference

Using multiple translators in a language definition

COBOL II WITH DB2 PREPROCESSOR - LANGUAGE DEFINITION FOR SCLM

*

*

* DB2 OUTPUT IS PASSED VIA THE 'SYSCIN' DD ALLOCATION TO COBOL IT.

* POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.

* CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.

* ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.

* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
* LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

FLMLANGL LANG=DB2C0OB2,ALCSYSLB=Y
* PARSER TRANSLATOR

FLMTRNSL CALLNAM="'SCLM COBOL PARSE',
FUNCTN=PARSE,
COMPILE=FLMLPCBL,
PORDER=1,
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)
(* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

O0O0O0

*

BUILD TRANSLATORS

* ok * ok

--DB2 PREPROCESSOR INTERFACE--
FLMTRNSL CALLNAM="'DB2 PREPROCESS',
FUNCTN=BUILD,
COMPILE=DSNHPC,
VERSION=1.0,
GOODRC=4,
PORDER=3,
OPTIONS=(HOST(COB2))
-- N/A --
FLMALLOC IOTYPE=N
-- N/A --
FLMALLOC IOTYPE=N
-- N/A --
FLMALLOC IOTYPE=N
-- SYSLIB --
FLMALLOC IOTYPE=I,KEYREF=SINC
* 5 -- SYSIN --
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, ©
RECNUM=2000
* 6 -- SYSPRINT --
FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=121, ©
RECNUM=9000, PRINT=I
* 7 -- N/A --
FLMALLOC IOTYPE=N
* 8 -- SYSUT1 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
* 9 -- SYSUT2 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
* 10 -- SYSUT3 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

OO0O0O0O0

*
£ w N =

Figure 28. COBOL II with DB2 Preprocessor (Part 1 of 2)

Chapter 5. Language definition considerations 81

Invoking user-defined parsers

* 11 - N/AS -
FLMALLOC IOTYPE=N
* 12 -- SYSTERM --

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE
* 13 -- N/A --
FLMALLOC IOTYPE=N
* 14 -- SYSCIN --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C
RECNUM=9000, DDNAME=SYSCIN
* 15 -- N/A --
FLMALLOC IOTYPE=N
* 16 -- DBRMLIB--
FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C
DFLTTYP=DBRM, KEYREF=0UT1, C
RECFM=FB, LRECL=80,RECNUM=5000, DIRBLKS=1

--COBOL II INTERFACE--

*

FLMTRNSL CALLNAM="'COBOL II COMPILER',
FUNCTN=BUILD,
COMPILE=IGYCRCTL,
VERSION=2.0,
GOODRC=0,
PORDER=3,
OPTIONS=(XREF,LIB,APOST,NODYNAM,LIST,NONUMBER, NOSEQ)

OOOO0O0

DDNAME ALLOCATION (USING DDNAMELIST SUBSTITUTION)

* ok * ok

1 (* SYSLIN %)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C
RECNUM=5000, DFLTTYP=0BJ, DDNAME=SYSLIN
(* N/A *)
FLMALLOC IOTYPE=N
(*» N/A %)
FLMALLOC IOTYPE=N
(* SYSLIB x)
FLMALLOC IOTYPE=I,KEYREF=SINC,DDNAME=SYSLIB
(% SYSIN %)
FLMALLOC IOTYPE=U,DDNAME=SYSCIN
(* SYSPRINT =*)
FLMALLOC IOTYPE=0,KEYREF=0UT2,RECFM=FBA,LRECL=133, C
RECNUM=25000,PRINT=Y,DFLTTYP=LIST, DDNAME=SYSPRINT

* 7 (* SYSPUNCH =*)

FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE
* 8 (* SYSUT1 %)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 9 (% SYSUT2 x)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 10 (* SYSUT3 %)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 11 (* SYSUT4 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
x 12 (SYSTERM =)

FLMALLOC IOTYPE=A,DDNAME=SYSTERM

FLMCPYLB NULLFILE
* 13 (* SYSUT5 =)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 14 (* SYSUT6 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 15 (* SYSUT7 %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

*
o (6] » w N

Figure 29. COBOL II with DB2 Preprocessor (Part 2 of 2)

Invoking user-defined parsers

SCLM allows you to replace an SCLM-supplied source parser with a user-defined source parser. This
option is important when you are defining a new language for a project because such a language is likely
to have a syntax unlike any of the languages that the SCLM-supplied parsers can recognize.

When you write a new parser for a language, you must:

1. Define the information tracked by SCLM in terms of the syntax of the language you want to support.

82 z/0S: z/OS ISPF SCLM Guide and Reference

Invoking user-defined parsers

2. Write a program, based on the information you defined, that passes the statistical and dependency
information for a member written in this new language to SCLM. This program is called a parser.

3. Tell SCLM how to invoke your parser.

Figure 31 on page 85 to Figure 40 on page 93 contain a parser, written in PL/I, for the ISPF skeleton
(SKELS) language. This section works through the three preceding steps using the SKELS parser as an
example.

Several user-modifiable parsers, written in REXX, are included with SCLM. FLMLRASM (Assembler),
FLMLRCBL (COBOL), FLMRC2 (workstation C/C++ and resource files), FLMLRIPF (workstation help files),
FLMLRC37 (C/370), and FLMLRCIS(C/C++ for MVS with include set support) are described in Chapter 22,
“SCLM translators,” on page 563. Chapter 7, “Understanding and using the customizable parsers,” on
page 129 contains information on modifying the REXX parsers.

Defining information tracked by SCLM

SCLM tracks four kinds of information for each module:
« Statistical information

Statistical information includes such data as the total lines and the number of comments in the module.
See Part 2, “Developer's Guide,” on page 135 for a description of the 10 statistics kept by SCLM.

« Dependency information

SCLM tracks two types of dependency information. The first is the name of the members that are
included by a member. The second is the include set that is used to find the include. This information is
used when a member is built or promoted. See “Specifying the locations of included members” on page
94 for more information on the include information kept by SCLM.

« Change code information

The change code information is a list of change codes associated with members under SCLM control.
These change codes are optional unless the project manager has defined a change code verification
routine requiring them. Includes and change codes for a member can be viewed with the Library Utility.

« User-defined information

User-defined information is a list of free-form records derived from the member via the parse translator
and stored in the accounting record. When writing a new parser, define exactly how the parser derives
this information from a module.

Writing the parser
Consider these things when you write your own parser:

« If any information is to be passed to the parser from SCLM, it is passed through a single parameter
string as if your program had been invoked from TSO as:

CALL program 'parameter list'

« You can use the SCLM variables to pass information to the parser about the module to be parsed.

 You can allocate any files you need (including the module to be parsed) to ddnames or pass the data set
names directly through the parameter list.

« SCLM allocates space for an array and a structure. It is up to the parser to place statistical and
dependency information in the array and the structure as it parses the module. SCLM can pass the
address of the structure and the array to the parser through the parameter list string. If the parser
returns a successful return code, SCLM moves the parsed information into the accounting record of the
module.

The SKELS parser example consists of four routines. Together, these routines perform the work needed to
parse an ISPF skeleton as we have described.

Chapter 5. Language definition considerations 83

Invoking user-defined parsers

GETPTRS
Takes the addresses from the parameter list and places them in the appropriate pointer variables.

INITIAL
Initializes the counter variables and the parse structure (STAT_INFO).

PARSE
Reads the lines of the skeleton one at a time, and saves any statistical or dependency information it
finds.

WRAPUP
Prepares the parse structure and the parse array (LIST_INFO) to be passed back to SCLM.
Telling SCLM how to invoke your parser

You need to add a few SCLM macros to your project definition for SCLM to invoke your parser. The macros
used to define the SKELS parser are shown in Figure 30 on page 84 For your parser, you need:

« An FLMLANGL to define your language (if it is not already there)
« An FLMTRNSL to define your parser

« An FLMALLOC for each ddname required by your parser

« An FLMCPYLB for each data set name you want to specify.

In Figure 30 on page 84 you can examine the keywords on the macros to see how they are used.

On the FLMLANGL macro, the LANG parameter indicates the string (in this case it is SKELS) that needs to
be given to SCLM when you want SCLM to treat a module like a skeleton. The BUFSIZE parameter is the
number of elements in the LIST_INFO array that SCLM passes to the parser.

On the FLMTRNSL macro, the COMPILE and DSNAME parameter tell SCLM that the parser can be found in
SCLM.PROJECT.LOAD(FLM@SKLS). The OPTIONS parameter contains three SCLM variables: @ @FLMSTP,
@@FLMLIS, and @@FLMSIZ. When the parser converts the character string values of @@FLMLIS and
@@FLMSTP to fullword binary integers, the result is the addresses of the LIST_INFO array and the
STATS_INFO structure, respectively. The value of @@FLMSIZ is the number of bytes allocated for the
LIST_INFO array.

The first FLMALLOC macro allocates the module to be parsed to ddname SSOURCE. The SKELS parser
looks at this ddname for the skeleton source. The second FLMALLOC macro allocates an error listings file.
If an error occurs during the parse, the SKELS parser writes an explanatory message and provides a
recommended solution. If the SKELS parser passes back a return code greater than that specified on the
GOODRC parameter of the FLMTRNSL macro, the contents of this listings file are written to the edit
listings file for the parse. This is how you can pass messages and information about the parse to your
users.

/
/* ISPF SKELETON LANGUAGE DEFINITION */
[Fhkk kK Kk hkkkhhhhkkhhhhhkkkhhhhkkkhhhkkkkkhhkhkkkkhhkhkkkkkhhkhkkkkkkkk kK kxkx /

FLMLANGL LANG=SKEL , VERSION=V2. 3, BUFSIZE=50
PARSER TRANSLATOR

FLMTRNSL CALLNAM='SKEL PARSER', ©
COMPILE=FLM@SKLS, C
DSNAME=SCLM.PROJECT.LOAD, C
FUNCTN=PARSE, ©
PORDER=1, C
GOODRC=0, C
VERSION=V1ROMO, ©
OPTIONS='/@@FLMSTP,@@FLMLIS,@@FLMSIZ,"

(* SOURCE *)

FLMALLOC IOTYPE=A,DDNAME=SSOURCE

FLMCPYLB @@FLMDSN (@@FLMMBR)

(* LISTING *)

FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, ©

RECNUM=6000, DDNAME=ERROR, PRINT=Y

Figure 30. SKELS Parser Definition

84 z/0S: z/OS ISPF SCLM Guide and Reference

Invoking user-defined parsers

PROCESS;

R /
[*** *x%/
/**% Program: PSKELS *kk /[
[*** *x%/
/*%% Purpose: Performs an SCLM parse of ISPF skeletons after K%k /[
[*x* SCLM edit and during migration of source to SCLM.x*%x%/
[*** *x%/
/**xx Inputs: A parameter list containing addresses of a *kk [
[*x* structure and a variable-length array into which %%/
[*x* parse information is placed. The length of the **x/
[KKk array, in bytes, is also passed. K%k /[
[*x* *x%/
[*** In addition, source from the member to be parsed *%x/
[*%K is read from ddname SSOURCE. Kkk [
[*x* *x%/
/**% Outputs: The structure and array are filled with parse Kkk [
[KKk information by this program. Any error messages *xx/
[*x* are written to ddname ERROR. **%/
[*** *x%/
/*%% Retcode: A fullword integer value, indicating the overall x%x/
[*x* success of the parse, is returned in register 15.%%x%/
[*** *x%/
[*%K 0 = Successful parse; parse information is Kkk [
[*x* returned in the structure and array. *x%/
[*** *x%/
[*%K 4 = Variable-length array was too small to hold %x/
[*x* all of the parsed information. Not all *x%/
[*xk information was passed back to SCLM. The Kkk [
[*%K number of elements needed is shown in the Kkk [
[xkk listings data set. *k%k [
[*** *x%/
[*%K To correct this problem, either: Kkk [
[*x* *x%/
[*** * Increase the value of BUFSIZE in the *kk
[KKk FLMLANGL macro for this parser, or K%k /[
[*x* *x%/
[*** * Break the skeleton being parsed into *kk
[KKk smaller skeletons and use)IM to join K%k /[
[*x* them back together. *x%/
[*** *x%/
/*%% Logic: 1) Obtain addresses of structure and array from *xx/
[xkk parameter list. *k%k [
[*** 2) Initialize counters in structure. KKk [
[*%K 3) For each line of skeleton source: Kkk [
[*x* a) Increment appropriate counters. **%/
VEZ3S b) If record starts with)IM, find and save *xx [
[*%K imbedded skeleton name. Kkk [
[*x* c) Scan the record for variable names and *x%/
[*xk save in a program array any new names. Kkk [
[*%K d) If record starts with)DEFAULT, get new Kkk [
[Hxk '&' and ')' characters. *Kkk [
[*xk 4) Calculate summary statistics. *xx [
[KKk 5) Write an 'END ' element to end of parse array.xxx/
[*x* 6) Retuzxn. *x%/
[*** *x%/

/**/

Figure 31. Parser for ISPF skeletons (Part 1 of 8)

Chapter 5. Language definition considerations 85

Invoking user-defined parsers

PSKELS:
DCL
DCL
DCL

PARMLIST
PARMLISTx
PAREN

NAME
NAMECHRS
RECORD
STAT_PTR
LIST_PTR
NON_COM_READ
EOF

(I,3,K)
USED_ELMTS

LISTLEN

RETCODE
ADDR
INDEX
LENGTH
MIN
REPEAT
SUBSTR
VERIFY
PLIRETC
SSOURCE
ERROR
FXB_OV
PTR_OV

DCL

DCL
DCL
DCL

PROC (PARMLIST) OPTIONS (MAIN);

CHAR(255) VAR; /x*
CHAR(255) VAR; /*

Parameter list
Copy of the parameter list

CHAR(1), /* Contains ')' special char
CHAR(8), /* Contains a referenced name
CHAR(39), /* Valid name characters
CHAR(80), /* Output buffer for error list
POINTER, /* Points to stats structure
POINTER, /* Points to parse array
BIT(1), /* Prolog flag

BIT(1), /* End-of-file flag

FIXED BIN(31), /% Simple counters

FIXED BIN(31), /* Number of parse array

/* elements used so far
/* Total number of available
/* parse array elements
/* Return code

FIXED BIN(31),

FIXED BIN(31);
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN;
FILE STREAM INPUT;
FILE STREAM PRINT;
FIXED BIN(31), /% Fullword integer
POINTER BASED (ADDR(FXB_0OV));
/* Pointer variable overlay on
/* top of a fullword integer
/* variable

9%INCLUDE (STATINFO) ;
9INCLUDE (LISTINFO) ;

RETCODE = 0O;
CALL GETPTRS;
CALL INITIAL;
CALL PARSE;

CALL WRAPUP;

CALL PLIRETC(RETCODE);

Figure 32. Parser for ISPF skeletons (Part 2 of 8)

86 z/0S: z/OS ISPF SCLM Guide and Reference

*/
*/
*/

Invoking user-defined parsers

GETPTRS: PROC;
/

|| /
[*** *x%/
/*** Routine: GETPTRS *kk /[
[*** *x%/
/*%% Purpose: Converts the information passed to this program *xx/
[*x* into addresses and array length information. *x%/
[*** *x%/
/*%% Inputs: A varying length string containing parameters in *%x/
[*x* the following format: *x%/
[*** *x%/
[**% '<stat_ptr>,<list_ptr>,<length>,’ *%kk
[*x* *x%/
[*** where stat_ptr is the EBCDIC representation xxx/
[*%K of the address of the static *xx/
[*Kx portion of the account *xk [
[*** record for this member, *kk
[KKk list_ptr is the EBCDIC representation %%/
[**%* of the address of the Xk [
[*** dynamic portion of the *xk [
[*%K account record, and Kkk [
[*x* length is the number of bytes *x%/
V23S allocated to the dynamic *kx [
[Hkk portion of the account *x% [
[*x* record. This value is equal *x*x*/
[*** to 228 times the number of *kk
[KKk elements in that array. K%k /[
[*x* *x%/
[*** Note that this format is consistent with the *kk
[KKk OPTIONS keyword on the FLMTRNSL macro that K%k /[
[*x* specifies how to invoke this parser. *x%/
[*** *x%/
/**% Outputs: The three variables, STAT_PTR, LIST_PTR and *x*x /[
[*x* LISTLEN are set from the values in the *x%/
[%Kk parameter list. *kk /[
[*** *x%/
/**% Logic: 1) Find the first comma. *x%/
[k 2) Convert the contents of the character string **x%/
[*%K before that comma into integer format. For #%x/
[*x* example, the string '19,' would be converted **x*/
[*xk into an integer (X'00000013') *xx [
[Hxk 3) Find the next comma. *kk [
[*x* 4) Convert the contents of the character string **xx/
[*Kx before that comma into integer format. *kk [
[*%K 5) Find the last comma. Kkk [
[*x* 6) Convert the contents of the character string **x/
[*Kx before that comma into integer format. *kk [
[*** *x%/
/**x*% Note: We take advantage of PL/I's ability to convert *x%/
[*x* a number in character string format into a Kkk [
[KKk fullword binary value. K%k /[
[*x* *x%/
[HHESE SRS AFAFEFE IR SRS AR AFAFH R RS SRS AR AFARA TSRS SR AR /

PARMLISTX = PARMLIST;

I = INDEX(PARMLIST,',');

FXB_OV = SUBSTR(PARMLIST,1,I-1);

STAT_PTR = PTR_OV;

PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

Figure 33. Parser for ISPF skeletons (Part 3 of 8)

Chapter 5. Language definition considerations 87

Invoking user-defined parsers

I = INDEX(PARMLIST,',');

FXB_OV = SUBSTR(PARMLIST,1,I-1);

LIST_PTR = PTR_OV;

PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I = INDEX(PARMLIST,',');
LISTLEN = SUBSTR(PARMLIST,1,I-1);
LISTLEN = LISTLEN / 228;

END GETPTRS;

INITIAL: PROC;

R /
[*** *x%/
/*** Routine: INITIAL KKk [
[*** *x%/
/*%% Purpose: Initializes the counters and variables to be K%k /[
[xkk used during the parse. *k%k [
[*** *x%/
/*%% Inputs: None. Kkk [
[*x* **%/
/**% QOutputs: Initialized variables. *kx [
[*** *x%/
[HHERH A A I AFEEE RS RIS A AFAFEFI TR RIS AT IFAFE IR RS AK AR A /

; /* # of lines in the skeleton */
; /* # of lines starting with)CM %/

STATINFO.LINES.TOTAL = 0;
; /* # lines not starting w/)CM */

STATINFO.LINES.COMMENT

STATINFO.LINES.NON_COMMENT=
STATINFO.LINES.BLANK =
STATINFO.LINES.PROLOG =

0
0]
0
0; /* # lines starting with)BLANK */
0]
[*%/
0
0]
0
0
0]

; /* # lines before 1st noncomment */

STATINFO.STMTS.TOTAL = 0; /* = LINES.TOTAL */

STATINFO.STMTS.COMMENT = 0; /* = LINES.COMMENT */

STATINFO.STMTS.CONTROL = 0; /* # of lines starting with) */

STATINFO.STMTS.ASSIGNMENT = Q; /% = 0 */

STATINFO.STMTS.NON_COMMENT= ©; /* = LINES.NON_COMMENT */

[**/
USED_ELMTS = 0;
[**/

NAMECHRS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789@#$" ;

PAREN = ')';
END INITIAL;
PARSE: PROC;
R /
[*** *x%/
/*** Routine: PARSE Kk [
[*** *x%/
/**% Purpose: Parses the skeleton and places the result in the %%/
[*x* account record structures whose addresses were *x%/
[Hxk passed to the program. *kk [
[*** *x%/
/**% Inputs: Skeleton source from ddname SSOURCE. *x%/
[*** *x%/
/**% Outputs: Parse results in structure STAT_INFO and array K%k /[
[*** LIST_INFO. KKk [
[*** *x%/
/*%% Logic: 1) Read each record of the skeleton. For each *xx/
[*x* line read, increment the appropriate *x%/
V23S counters. *xx [
[*** *x%/
[HHEHH SR A AFAFEFE RIS SRR AFAFAFIFE ISR S A AT AFAFE TR RS A KA /

Figure 34. Parser for ISPF skeletons (Part 4 of 8)

88 z/0S: z/OS ISPF SCLM Guide and Reference

Invoking user-defined parsers

OPEN FILE(SSOURCE);

EOF = '0'B;

NON_COM_READ = 'Q'B;

ON ENDFILE(SSOURCE) EOF = '1'B;

GET FILE(SSOURCE) EDIT(RECORD) (A(80));
DO WHILE (-EOF);

|| /
/**% Perform this loop for each record in the skeleton. *xx [
/**/
/**x*% Increment total line counter. *x%/
[HHESK SRR AFAFARE RS SRS S AR AFAFEFERA RS SR SR AFARIR RS SRS SRR A /

STATINFO.LINES.TOTAL = STATINFO.LINES.TOTAL + 1;

/*%%x If the line starts with)IM, save the name of the *xx [
/*%% imbedded member in LIST_INFO in an 'INCL' array element. *xx /[
[HHHHH A AR AFIFERE SRR S KA AFEAFEFA TSRS AFAFARA TR RS S KA /

IF SUBSTR(RECORD,1,3) = PAREN || 'IM' THEN

DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE = 'INCL';
LISTINFO(USED_ELMTS) .DATA = NAME;
END;
ELSE;
END;

ELSE;

[HFESK SRR AR AFIFE R RS S S AFAFEFE RIS RS AFAFA TR RS SR SR AR AR A /
/**% If the line starts with)DOT, save the name of the KKk /[
/**x% referenced table in LIST_INFO in a 'USER' array element. *x%/
[HHESH SR EFAFHFE RS SRS A AFAFAFEFA RIS SRSAIAF AR AR R SRS S KSR /

IF SUBSTR(RECORD,1,4) = PAREN || 'DOT' THEN

DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE = 'USER';
LISTINFO(USED_ELMTS) .DATA = 'TABLE: ' || NAME;
END;
ELSE;
END;

ELSE;
/**/
/**x*% If the line starts with)CM, increment the comment *x%/
/*%%x counter. Otherwise, increment the non-comment counter. *kx /[
/**/

IF SUBSTR(RECORD,1,3) = PAREN || 'CM' THEN

STATINFO.LINES.COMMENT = STATINFO.LINES.COMMENT + 1;

ELSE

STATINFO.LINES.NON_COMMENT = STATINFO.LINES.NON_COMMENT + 1;

Figure 35. Parser for ISPF skeletons (Part 5 of 8)

Chapter 5. Language definition considerations 89

Invoking user-defined parsers

[HREREE AR AR AR ISR SE SR RARERERAFER RIS SR S SRR AR RAF AR RS S /
/*%x If the line starts with)BLANK, increment the blank line *kk
/**% counter. K%k /[
[HRERER AR AR SR SRS SR FARERARAR AR SRS ISR RERARAR AR SRS S /

IF SUBSTR(RECORD,1,6) = PAREN || 'BLANK' THEN

STATINFO.LINES.BLANK = STATINFO.LINES.BLANK + 1;

ELSE;
R /
/*%x% If the line starts with), increment the control K%k /[
/**x* statement counter. *x%/
[*** *x%/
/*%% If the line does not start with), increment the data K%k /[
/**% line counter. *kk /[
[*** *x%/

/*%% If this is the first data line, then we have reached the endx*x/
/**% of the prolog (defined here as the comment lines before the *%x/

/**% first data line). Set the prolog count to the number of *kk [
/*%% comments read so far. *%kk
/ || /

IF SUBSTR(RECORD,1,1) = PAREN THEN
STATINFO.STMTS.CONTROL = STATINFO.STMTS.CONTROL + 1;

ELSE
DO;
IF -NON_COM_READ THEN
DO;
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;
NON_COM_READ = '1'B;
END;
ELSE;
END;
/*%% If this line starts with)DEFAULT, then the special *kk [
/*%% character (the left parenthesis) for control cards might Kkk [
/**%* have changed. Get the new character. *x%/
e e /
IF SUBSTR(RECORD,1,8) = PAREN || 'DEFAULT' THEN
DO;

I = VERIFY(SUBSTR(RECORD,9,72),"' ') + 8;
PAREN = SUBSTR(RECORD,I,1);
END;

ELSE;
/**/
/**% End of parse-a-line loop. If there's another line, read it %%/
/**% and go back through the loop. Kk [
/**/

GET FILE(SSOURCE) EDIT(RECORD) (A(80));

END;

CLOSE FILE(SSOURCE);
/*%x If there were no non-comment lines, then set the number of **x/
/*%% prolog lines to the number of comment lines. Kkk [

IF -NON_COM_READ THEN
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;
ELSE;
END PARSE;

Figure 36. Parser for ISPF skeletons (Part 6 of 8)

90 z/0S: z/OS ISPF SCLM Guide and Reference

Invoking user-defined parsers

GETNAME: PROC;
/

|| /
[*** *x%/
/*** Routine: GETNAME *kk /[
[*** *x%/
/*%% Purpose: Returns the name specified on an)IM or)DOT K%k /[
[*x* statement. *x%/
[*** *x%/
/**xx Inputs: An 80-byte record in variable RECORD. *kk [
[*x* *x%/
/**% Outputs: The 8-byte name in variable NAME. *kx /[
[*** *x%/
/**x% Logic: 1) Find the first blank after the)IM or)DOT. *x%/
VEZ 3 2) Find the next nonblank after that blank. *x%/
[KKk 3) Move that nonblank and the next 7 bytes into *%x/
[**k variable NAME. *k%k [
[*** *x%/

[Fokok ok kkkok ok ok ek ke k ok ok ok k ok ok ok ok ok ok ok ok ko ok ok ok ok ke k ok ok ok ko k ok ok ok ok ok ok ok ok ok ok ke ok /
I = INDEX(RECORD,' ');
I = VERIFY(SUBSTR(RECORD,I,81-I),"' ') + I - 1;
NAME = SUBSTR(RECORD,I,8);

END GETNAME;

WRAPUP: PROC;
/

.. /
[*** *x%/
/*%% Routine: WRAPUP *kk [
[*x* *x%/
/**% Purpose: Saves the last of the parse information in the *kk
[*%K SCLM structures and outputs error messages to Kkk [
[*x* the listing file if the LIST_INFO array was not **xx/
[*** large enough to hold all of the information. *kk
[*** *x%/
/***x Inputs: None. *kk /[
[*** *x%/
/**% Outputs: More data in LIST_INFO and STAT_INFO. *xx /[
[*x* *x%/
/**% Logic: 1) Calculate summary information. *kk
VEZ 3 2) Write an 'END ' element to LIST_INFO. *xx [
[*x* 3) If there was not enough room in LIST_INFO, *x%/
[*** write out messages that describe the error *kk [
[KKk and that indicate how to solve the problem. K%k /[
[*x* **%/

.. /

STATINFO.STMTS.TOTAL = STATINFO.LINES.TOTAL;
STATINFO.STMTS.COMMENT = STATINFO.LINES.COMMENT;
STATINFO.STMTS.NON_COMMENT = STATINFO.LINES.NON_COMMENT;

Figure 37. Parser for ISPF skeletons (Part 7 of 8)

Chapter 5. Language definition considerations 91

Invoking user-defined parsers

[*%/
/* WRITE AN END ELEMENT TO LIST ARRAY
[**/
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS) .TYPE "END ';
LISTINFO(USED_ELMTS) .DATA Y
END;
ELSE
DO;
OPEN FILE(ERROR);
[*%/
PUT FILE(ERROR) SKIP LIST(

*/

'"ERROR: INFORMATION RESULTING FROM PARSE DOES NOT ' |

'"FIT IN PARSE ARRAYS.');

"FIX: 1) INCREASE BUFSIZE VALUE IN FLMLANGL MACRO,');

/55
PUT FILE(ERROR) SKIP LIST(
' PARSE ARRAY ELEMENTS:', LISTLEN);
/55
PUT FILE(ERROR) SKIP LIST(
' ELEMENTS NEEDED: ', USED_ELMTS);
/55
PUT FILE(ERROR) SKIP(2) LIST(
/55
PUT FILE(ERROR) SKIP LIST(
' - OR -);
/55

PUT FILE(ERROR) SKIP LIST(

2) BREAK THIS SKELETON UP INTO SMALLER ' ||

'"SKELETONS AND IMBED THEM ');

[*x/
PUT FILE(ERROR) SKIP LIST(
' IN A NEW "TOP LEVEL" SKELETON
[*x/
PUT FILE(ERROR) SKIP(2) LIST(
"PARAMETER LIST: ' || PARMLISTX);
[*x/

LISTINFO(LISTLEN).TYPE =
LISTINFO(LISTLEN) .DATA = ' ';

[*%/
CLOSE FILE(ERROR);
[%%/
RETCODE = 4;
END;
END WRAPUP;
END PSKELS;

Figure 38. Parser for ISPF skeletons (Part 8 of 8)

AR AR AR A AR R AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR /
V23S *kk [
/*%% LISTINFO Structure K,k [
[xK* —
/*%%* Maps the static portion of the account record. *kk [
[xK* —yi
/*%% The number of elements declared for this array should not *kk [
/*** be greater than the value specified on the BUFSIZE keyword #*%x/
/**% on the FLMLANGL macro. K,k [
[xK* —
[k dkkKkkkkkok Kk okkkk ok k ok kkk ok kokkkk ok k ok ok k ok k ok kkk ok k ok ok k ok kkkkkk ok kkkkkkkk [
DCL 1 LISTINFO(50) BASED (LIST_PTR),
2 TYPE CHAR(4),
2 DATA CHAR(224);

Figure 39. LISTINFO Module

92 z/0S: z/OS ISPF SCLM Guide and Reference

Processing conditionally saved components

R /
[*** *x%/
/*%% STATINFO Structure Kkk [
[*x* *x%/
/*** Maps the static portion of the account recoxd. *xk [
[*** *x%/
... /
DCL 1 STATINFO BASED (STAT_PTR) ,
2 LINES,

3 TOTAL FIXED BIN(31),

3 COMMENT FIXED BIN(31),

3 NON_COMMENT FIXED BIN(31),

3 BLANK FIXED BIN(31),

3 PROLOG FIXED BIN(31),

2 STMTS,

3 TOTAL FIXED BIN(31),

3 COMMENT FIXED BIN(31),

3 CONTROL FIXED BIN(31),

3 ASSIGNMENT FIXED BIN(31),

3 NON_COMMENT FIXED BIN(31);

Figure 40. STATINFO Module

Processing conditionally saved components

SCLM provides a feature to handle translators that, by design, have missing or static outputs. Static
outputs help SCLM in its work-avoidance algorithms. Note, however, that SCLM relies on translator return
codes to determine which outputs are static.

Example of processing conditionally saved components

Suppose a translator can determine if a developer changed only comments in the source code, and
signals that by a return code of 2. The translator creates a listing output to match the current source.
However, creating object code for the source is unnecessary because comment changes to source do not
alter object code. In this case, the object code is a static output because it did not change. Specifying a
NOSAVRC=2 on the FLMALLOC macro corresponding to the object output instructs SCLM not to copy
object modules back to the hierarchy when the translator returns a 2. SCLM copies the generated listing
back to the hierarchy when the translator returns a 2, if the object modules already exist in the hierarchy.

Components that depend on the object do not need to be rebuilt when only the listing is regenerated. If
you specify DEPPRCS=N on the FLMLANGL macro, SCLM rebuilds components dependent on a member

on

*
*

ly if all its outputs were saved.

FLMLANGL LANG=XYZ, VERSION=V1, DEPPRCS=N

BUILD TRANSLATOR(S)

FLMTRNSL CALLNAM="'TRANSLATOR XYZ',

FUNCTN=BUILD,
COMPILE=XYZ,
GOODRC=4

(% SYSIN %)

[eXeXe]

FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C
RECNUM=1000, DDNAME=SYSIN

(% SYSPRINT =%)

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=133, C
RECNUM=30000, PRINT=Y, DDNAME=SYSPRINT,DFLTTYP=LISTING

(* SYSLIN =)

FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C
RECNUM=5000, DDNAME=SYSLIN,DFLTTYP=0BJ,NOSAVRC=2

Figure 41. Sample Language Definition for Conditionally Saved Components

Setting up the project definition
To access this feature, use the FLMALLOC, FLMLANGL, and FLMTRNSL macros:
1. Identify the static outputs and their corresponding FLMALLOCSs in the language definition.

Chapter 5. Language definition considerations 93

Specifying the locations of included members

2. For each static output:

« List the translator return code that indicates that the output is not to be saved
« Specify that return code as the NOSAVRC parameter of the FLMALLOC macro for that output.

The NOSAVRC must have a nonzero positive value. It is only valid for IOTYPEs O and P.

3. Make sure that the GOODRC on the FLMTRNSL macro corresponding to that translator is greater than
or equal to the highest NOSAVRC parameter you specified.

4. Determine whether you want SCLM to rebuild components that depend on a given member only if all
its outputs (including the static outputs) were saved. If that is the case, specify DEPPRCS=N on the
FLMLANGL macro. If you specify DEPPRCS=Y (or let it default to Y), SCLM rebuilds components that
depend on that member whenever the build translator returns a good return code. In the preceding
example, DEPPRCS=Y causes SCLM to rebuild components that depend on the given member even
when only the listing has changed.

Likewise, the translator can directly store output in an external data set not under SCLM control. For
example, the Ada translator controls output stored in Ada sublibraries. Under such circumstances, the
build function requires a signal from the translator to detect whether some of the external outputs were
saved to external data sets. SCLM uses NOSVEXT on the FLMTRNSL macro in the same fashion as the
parameter NOSAVRC on the FLMALLOC macro to detect whether external outputs were saved.

Specifying the locations of included members

SCLM tracks two pieces of information for each include member that is found by a parser. The first piece
of information is the member name of the include; the second is the include set that contains the included
member. If no include set is returned by the parser for a member, SCLM assigns that member to the
default include set. The name of the default include set is all blanks.

SCLM does not track an include member if it meets all of the following conditions:

« The language definition for the member specifies CHKSYSLB=PARSE. This is the default.

« An accounting record for the include is not found by searching the hierarchy for each type specified on
the FLMINCLS for the include set.

- The include is found in one of the data sets specified on an FLMSYSLB macro for the include set.

Includes that meet these conditions are removed from the list of includes stored in the accounting record
of the member. Because the include is not being tracked, build and promote do not detect if the include is
removed from the FLMSYSLB data sets or added to the project database.

Build ignores an include if it meets all of the following conditions:

- The language definition for the member specifies CHKSYSLB=BUILD.

« An accounting record for the include is not found by searching the hierarchy for each type specified on
the FLMINCLS for the include set.

« The include is found in one of the data sets specified on an FLMSYSLB macro for the include set.

Includes that meet these conditions are removed from the list of includes stored in the build map record
of the member. Because the include is not being tracked, build and promote will not detect if the include
has changed since the last build.

The include information is used by build and promote to determine whether the member is up-to-date.
When you build, the includes for an up-to-date member have the same type, date, time, and version as
the last time that member was built. When you promote, the includes for an up-to-date member have the
same date, time, and version as the last time that member was built. Promote does not search the types
listed on FLMINCLS macros for includes. It relies instead on the information in the build map to determine
the type name of the included member. If a member is not up-to-date, build attempts to rebuild the
member and promote does not allow the member to be promoted to the next group in the hierarchy.

An include set is used to associate an included member name with the type or types in the project that
are searched to find a member with that name. The FLMINCLS macro is used to associate an include set

94 z/0S: z/OS ISPF SCLM Guide and Reference

Specifying the locations of included members

with one or more types in the project definition. Types are searched in the order listed on the FLMINCLS
macro. Each type is searched from the current group to the top of the hierarchy before the next type in the
list is searched.

The number of include sets used by a language is usually related to the number of include ddnames
supported by the build translators for that language, where the includes are located in project data sets. If
the build translator only supports one include ddname, a single include set is sufficient for that language.
On the other hand, if there are multiple build translators, each supporting an include ddname and the
includes are separated into different types for each build translator, multiple include sets would be
needed.

If multiple include sets are needed, parsers must return the appropriate include set for each include.

Example

This example shows how pieces of a project might look if it were set up to use multiple include sets.

The following list shows the different types of includes in the project and the location of each include type
in the project data sets.

Include Type
Project Types and SYSLIB Data sets to Search

Constants
CONSTANT

Messages
INCLENGL, INCLUDE, PRODX.MSGLIB (syslib data set)

SQL Declarations
DCLGEN, source member's type, source member's extended type

All other includes
INCLUDE, source member's type, source member's extended type, SYS1.SEDCHDRS (syslib data set)

Figure 42 on page 95 shows how the include section of a source member might be coded:

#include <stdio> /* C standard i/o */

EXEC SQL INCLUDE SQLDEF1; /* SQL definitions */
#include "DD:MESSAGE (progl)" /* progl specific messages */
#include "DD:CONSTANT (common)" /% common constants */

#include "DD:CONSTANT (progl)" /% progl specific constants */
Figure 42. Source member with includes in different include sets

The parser must return the following values:

Member
include set

STDIO

SQLDEF1
soL

PROG1
MESSAGE

COMMON
CONSTANT

PROG1
CONSTANT

You could then use the language definition in Figure 43 on page 96 for this member.

Chapter 5. Language definition considerations 95

Specifying the locations of included members

* C370 W/DB2 LANGUAGE DEFINITION FOR PROJECT X *
* *
*

CDB2 FLMSYSLB SYS1.SEDCHDRS

*

FLMLANGL LANG=CDB2, VERSION=V1,ALCSYSLB=Y
*
* CONSTANT INCLUDES

*
CONSTANT FLMINCLS TYPES=(CONSTANT)
*

* MESSAGE INCLUDES

*

MESSAGE FLMINCLS TYPES=(INCLENGL,INCLUDE)

*

* SQL INCLUDES

*

SQL FLMINCLS TYPES=(DCLGEN, @@FLMTYP,@@FLMETP)
*

* ALL OTHER INCLUDES - DEFAULT INCLUDE SET
*
FLMINCLS TYPES=(INCLUDE,@@FLMTYP,@@FLMETP)
*
* PARSER TRANSLATOR

FLMTRNSL CALLNAM="'C370 REXX PARSER',
FUNCTN=PARSE,
COMPILE=MYCPARSE,
DSNAME=SOMEUSR.PARSER. LOAD,
CALLMETH=TSOLNK,

PORDER=1,
OPTIONS=(LISTSIZE=@@FLMSIZ,
LISTINFO=@@FLMLIS,
STATINFO=@@FLMSTP)

(% SOURCE *)

FLMALLOC 1IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMDSN (@@FLMMBR)

*

BUILD DB2 PREPROCESSOR TRANSLATOR

* % ok *

--DB2 PREPROCESSOR INTERFACE--
FLMTRNSL CALLNAM='DB2 C PREP',
FUNCTN=BUILD,
COMPILE=DSNHPC,
VERSION=D220,
GOODRC=4,
PORDER=3,
OPTIONS=(HOST(C) ,APOST)

Figure 43. Language definition to support multiple include sets (Part 1 of 3)

96 z/0S: z/OS ISPF SCLM Guide and Reference

OOOOO0O0O0

OOO0O0O0

*
(&) » w N =

* 10
* 11

* 12

* 13
* 14

*

FLMTRNSL

oo N/A oo

FLMALLOC IOTYPE=N

-- N/A --

FLMALLOC IOTYPE=N

-- N/A --

FLMALLOC IOTYPE=N

-- SYSLIB --

FLMALLOC IOTYPE=I,INCLS=SQL

-- SYSIN --

Specifying the locations of included members

FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

RECNUM=5000
-- SYSPRINT --

FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=133,
RECNUM=35000, PRINT=Y

-~ N/A --

FLMALLOC IOTYPE=N

-- SYSUTL --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

-- SYSUT2 --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

-- SYSUT3 --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

-- N/A --

FLMALLOC TIOTYPE=N

-- SYSTERM --

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

oo N/A oo

FLMALLOC IOTYPE=N

-- SYSCIN --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,
RECNUM=9000, DDNAME=DB2TRANS

-- N/A --

FLMALLOC IOTYPE=N

-- DBRMLIB--

FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, ©

DFLTTYP=DBRM, KEYREF=0UT1,

RECFM=FB, LRECL=80,RECNUM=5000, DIRBLKS=1

BUILD C370 TRANSLATOR

GOODRC=0,
PORDER=3,

OPTIONS=(XREF,LANGLVL (SAAL2),SOURCE,OPT,TEST(ALL),

CALLNAM='C 370",
FUNCTN=BUILD,
COMPILE=EDCCOMP,
DSNAME=SYS1.SEDCCOMP,
VERSION=C210,

OOOO0O0O0O0

MARGINS(1,72),NOGONUM,NOTERMINAL,FLAG(TI), SHOWINC)

Figure 44. Language definition to support multiple include sets (Part 2 of 3)

Chapter 5. Language definition considerations 97

Dynamic include tracking

* 1 (* SYSIN x)
FLMALLOC IOTYPE=U,DDNAME=DB2TRANS
*
* 2 (* SYSLIN x)
FLMALLOC TIOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, ©

RECNUM=5000,DFLTTYP=0BJ

* 3 (* SYSMSGS *)
FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCMSGS (EDCMSGE)

* 4 (% SYSLIB x)
FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCHDRS

* 5 (* USERLIB =*)
FLMALLOC IOTYPE=I

* 6 (* SYSPRINT *)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 7 (* SYSCPRT *)
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=137, C
RECNUM=20000, PRINT=Y,DFLTTYP=LIST

* 8 (* SYSPUNCH =x)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 9 (% SYSUT1 =)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 10 (* SYSUT4 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 11 (* SYSUT5 %)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000%*
* 12 (* SYSUT6 =)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

* 13 (* SYSUT7 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

* 14 (% SYSUT8 x)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

* 15 (% SYSUT9 x)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=137,RECNUM=2000

* 16 (* SYSUT10 x)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* (* CONSTANT *)
FLMALLOC IOTYPE=I,DDNAME=CONSTANT,INCLS=CONSTANT

* (* MESSAGE =)
FLMALLOC TIOTYPE=I,DDNAME=MESSAGE, INCLS=MESSAGE

Figure 45. Language definition to support multiple include sets (Part 3 of 3)

Dynamic include tracking

The SCLM build processor attempts to resolve all include references to source members before it invokes
any translator. However, for some translators, the include for a source member cannot be resolved until
after the translator invocation. Such includes are referred to as dynamic includes. SCLM can track dynamic
includes if the dynamic includes for a member can be altered only by modification of the member or one
of the included members.

To support dynamic includes, SCLM invokes an additional build translator step (FLMTRNSL macro)
following the translator that produces the output data set containing a list of dynamic includes. This
additional translator should parse the output data set for dynamic includes and store them in memory

98 z/0S: z/OS ISPF SCLM Guide and Reference

Input list translators

supplied by the build processor. You pass the address of this memory to the translator by specifying the
SCLM variable @@FLMINC in the translator options (OPTION parameter on FLMTRNSL macro). @@FLMINC
is a pointer to a set of includes relating to a specified member. The value of @@FLMINC is a string of
decimal characters that you must convert to a fullword binary value before using it as an address. The
following record layout is used to store the dynamic includes:

COUNT 4 bytes
TYPEL 8 bytes
MEMBER1 : 8 bytes
TYPE2 8 bytes
MEMBER2 8 bytes
TYPE## : 8 bytes

MEMBER# : 8 bytes

Figure 46. Record Layout Used to Store Dynamic Includes

You must specify the number of dynamic includes in the first 4 bytes as a fullword binary integer, followed
by the list of dynamic include member and type names. The amount of memory that the SCLM build
processor supplies limits the number of dynamic includes to 1000.

When using dynamic includes, consider the following points:

- Be sure to remove any duplicate include references before placing them in the structure pointed to by
@@FLMINC.

» Processors need the ability to handle 31-bit addresses as specified by the @@FLMINC parameter.

« Do not return any include references that are actually to external (non-SCLM) libraries. The build step
will receive an error (FLM01001) for any members not in the specified SCLM library.

« Deletion of members referenced through a dynamic include causes a build verification error
(FLM43001). The build process does not proceed, even when using unconditional mode. If a referenced
member is to be deleted, a build using the updated source should be performed before the deletion so
that the build map can be updated to remove the reference.

« Dynamic include references to members that are outputs of other members do not cause a relationship
to the member that created it, even when using extended mode. Builds and promotes for these must
use a high-level architecture definition whose scope includes both source members.

Input list translators

SCLM provides support for Build translators that operate on more than one source member in a single
invocation. This type of translator is known as an input list translator. SCLM users can use existing
translators that support this feature or write new user-defined translators to take advantage of the
feature. The IBM Ada/370 Compiler is the only SCLM-supported translator that can use input lists.

The SCLM Input List feature can increase the performance of an SCLM Build. Instead of SCLM calling a
translator once for each member to be built, SCLM calls the translator passing a list of members to be
built. SCLM attempts to place as many members as possible on each input list, thereby limiting the
number of translator invocations. The project manager specifies the maximum number of members
passed to a translator on an invocation in the language definition that includes the translator. This feature
is most useful when using translators that have a high startup overhead to run. Fewer invocations mean
increased speed for the SCLM Build process.

An input list translator receives a file that contains a list of data sets that a Build action is performed
against. It returns a file that contains a return code for each data set in the input list and, optionally, a set
of unique outputs for each data set in the input list.

Two translators, FLMTPRE and FLMTPST, serve as the interfaces between SCLM and the input list
translator.

- The FLMTPRE translator generates a list of data sets that an input list translator can use as input.

Chapter 5. Language definition considerations 99

Defining a new language to SCLM

« The FLMTPST translator passes the return code information that an input list translator provides for
every data set on the input list back to SCLM.

For more information, refer to “FLMTPRE” on page 622 and “FLMTPST” on page 623.

Note: The input list feature of the Build function is designed to work with direct translations of source
members only (source members referenced with an INCLD statement). Using the input list feature with
source members controlled by CC or Generic architecture definitions will produce undefined results
(source members referenced with a SINC statement).

Configuring the input list translators
Use the following macros to configure the input list translators to fit your needs:
- FLMLANGL
Set the following parameters:

— INPLIST=Y

— MBRLMT to the maximum number of members that can be included in the same invocation of the
translator.

— SLOCLMT to the maximum number of source lines to be processed on a single invocation of the
translator.

« FLMTRNSL
Set the following parameters:

— INPLIST=Y

— MBRRC to the maximum good return code for each member in the input list. MBRRC defaults to 0 and
is optional.

- FLMALLOC
Set the following parameters:

— MALLOC to designate which outputs of a translator have multiple unique instances.
— IOTYPEtoOorP.

SCLM only saves outputs with IOTYPE=0 in the hierarchy. For IOTYPE=0, you must also specify the
FLMCPYLB macro and the data set name on FLMCPYLB must contain the @@FLMMBR variable
somewhere in the variable string to enable SCLM to find the member-specific outputs. When
IOTYPE=0 is specified, the input list translator is expected to allocate the output data sets necessary
for each member.

Temporary data sets allocated with IOTYPE=P can be used as work data sets for the translators, but
they cannot be stored in the hierarchy.

— ALLCDEL to designate which output data sets were defined by the translator and should be deleted
by SCLM.

Defining a new language to SCLM

This section describes the control structures used to manage SCLM processes and illustrates how to
define a new language to SCLM. An example is included to show the statements needed to define the
control structures and SCLM macros. The example refers to a fictitious compiler, the Finnoga 4, to show
how to gather the information you need and how to specify that information to SCLM in the form of
language definition macros.

Using DDnames and DDname substitution lists

Many translators support a ddname substitution list; this contains ddnames, which are passed as a
parameter to the translator. In Figure 50 on page 114, the ddname in position 5 is the ddname from which
the compiler reads the source to be compiled. The ddname occupying that position in the ddname

100 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a new language to SCLM

substitution list is usually called SYSIN. You can override the default ddname by placing another ddname
in position 5 of the ddname substitution list. The compiler then reads from the other ddname. Table 14 on
page 101 lists the various ddnames used by the Finnoga 4 compiler described in this example. The
position number indicates the position of the ddname in a ddname substitution list. In addition, Table 14
on page 101 gives a brief description of the data sets allocated to the ddnames.

Note that some position numbers do not have a ddname associated with them.

SCLM allows a maximum of 512 characters for the ddname substitution list. Because every FLMALLOC for
a given translator causes an 8-character ddname to be put into the ddname substitution list, when the
PORDER > 1, a given translator may have a maximum of 64 FLMALLOCs.

Ddname substitution lists are usually documented in the programming guide for specific compilers and
linkage editors. Note that it is rare for two different compilers to have the same ddname substitution list
mappings.

Compilers are not required to support a ddname substitution list in order to be defined to SCLM. However,
ddname substitution list support makes it easy to link or string two different compilers or preprocessors
together. In “Defining a preprocessor to SCLM” on page 111, you will see how a ddname substitution list
is used to pass the outputs of a preprocessor to a compiler.

Compiler options

Assume that there are four Finnoga 4 compiler options that you can use:
« SOURCE or NOSOURCE

« MACRO or NOMACRO

« OPTIMIZE or NOOPTIMIZE

- 0OBJ().

It is not critical at this point to understand what these options mean to the compiler, just which options
are to be used for each compile. You should always specify SOURCE, NOMACRO, and OBJ(), but you must
specify the OPTIMIZE parameter on a module-by-module basis.

Table 14. DDname Substitution List Example

Position DDname Description of data set(s) allocated
Number
1 SYSLIN A partitioned data set into which the Finnoga 4 compiler writes the object

module. The OBJ keyword in the compiler's option string specifies the
member name to use.

2 <none> <none>

3 <none> <none>

4 SYSLIB One or more partitioned data sets through which the Finnoga 4 compiler
searches for INCLUDE members.

5 SYSIN A sequential data set that contains Finnoga 4 source to be compiled.

6 SYSPRINT A sequential listings data set. The Finnoga 4 compiler writes out a copy of

the source that was compiled along with any error, warning, and
informational messages.

7 <none> <none>

8 FINLIB A data set that contains information needed by the Finnoga 4 compiler.
This data set comes with the compiler.

9 <none> <none>

10 SYSUT1 A sequential work data set.

Chapter 5. Language definition considerations 101

Defining a new language to SCLM

Table 14. DDname Substitution List Example (continued)

Position DDname Description of data set(s) allocated
Number
11 SYSUT2 A sequential work data set.

Defining a new language: step-by-step
The following list briefly describes the process required to write a new SCLM language definition:

1. Define the language name to SCLM.

2. Define include-sets for the language to identify the locations of included members.

3. List the various programs (parsers, compilers, and so on) used to parse and build your source.
4

. For each program (or translator), look up the ddname substitution list (usually in the Programmer's
Guide for the compiler), or list the ddnames used by the program.

5. For each program or translator, write an FLMTRNSL macro followed by FLMALLOC macros (one for
each ddname to be allocated for the translator). Use the information in the program documentation to
determine which IOTYPE value to specify as well as which other FLMALLOC keywords are appropriate.

6. Write a sample architecture definition and send it to your users. Describe to your users how to convert
a JCL file of linkage editor control statements into architecture definitions.

7. Place the application under SCLM control.

This section is an illustration of the process for defining a language to SCLM. As you progress through the
definition, you will code SCLM macros with the information SCLM needs to control Finnoga 4 modules.
You will place this code into a member of the PROJDEFS.SOURCE data set called @FINNOGA. Language
definitions such as @FINNOGA are usually referenced in the code for a project definition by means of the
COPY statement.

Step 1.
Define the language.

The first step is to tell SCLM that you are defining a new language. To do so, code the following
FLMLANGL macro:

FLMLANGL LANG=FINNOGA,VERSION=FINN4

In this example, values are specified for two parameters. The default values are used for the other
parameters.

Parameter
Description

LANG=
Specifies the language name a user must enter on the SPROF panel or on the Migrate Utility panel
to request that this language definition be used to drive build and parse operations of the Finnoga
4 modules.

VERSION=
Identifies the specific release of the current Finnoga 4 compiler. If you install a new release or
version of the Finnoga 4 compiler, you can set this parameter to a different value so that SCLM can
mark all Finnoga 4 modules needing to be rebuilt. You must then re-assemble and link your
project definition.

Step 2.
Define include sets for the language to identify the locations of included members.

102 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a new language to SCLM

After the language is defined, you can specify where SCLM finds included members for the Finnoga 4
language. In the following example, the FLMINCLS macro is used to list the types that are searched for
includes:

FLMINCLS TYPES=(INCLUDE, @@FLMTYP)

In this example, the TYPES parameter of the FLMINCLS macro is used to tell SCLM where to look for
includes. Because no name is specified, this definition applies to the default include set.

Parameter
Description

FLMINCLS name
Specifies the name of the include set that uses this definition. If no name is specified (as in this
example), the definition is associated with the default include set. An include set defines a search
path for all includes associated with that include set. Multiple include set s can be specified in a
language definition if the parser and compiler support distinguishing one kind of include from
another. For the parser, this means that the syntax of the language must support determining
which include set an include belongs to. For the compiler, this means that a separate ddname
must be used for each different include set (kind of include).

Two include sets are useful when the standard language includes are kept in one Type and the
“EXEC SQL” includes are kept in another Type. A parser can be written to determine which include
set each include is in. The language definition then associates a ddname from the build translators
with the appropriate include set name.

TYPES=
Specifies the name(s) of the types which are searched to find includes. In this case, the
“INCLUDE” type is searched first. The @@FLMTYP SCLM variable indicates that the type of the
member that is processed by the Finnoga 4 compiler is to be searched next. For example, if
'EXAMPLE.USERX.SOURCE(PROGA)' is going to be compiled, SCLM looks for includes first in the
data sets associated with the INCLUDE type and then the SOURCE type.

Step 3.
Specify the programs that process the modules.

Next, identify the programs that are used to parse and build the Finnoga 4 modules. There are usually
two such programs: a parser and the compiler. For each of these programs, code an FLMTRNSL macro
and the appropriate FLMALLOC macros and FLMCPYLB macros.

Assume that you have written your own parser and that it is in the data set
SCLM.PROJDEFS.LOAD(FINPARSE). The parser requires an option string
@@FLMSIZ,@@FLMSTP,@@FLMLIS, and reads the source from ddname SOURCE.

Add this to your language definition:

FLMTRNSL CALLNAM='FINNOGA PARSER',
FUNCTN=PARSE,
COMPILE=FINPARSE,
DSNAME=SCLM.PROJDEFS.LOAD,
PORDER=1,
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

OoO0O0O0O0

The parameters included in this example are described as follows:
Parameter
Description

CALLNAM=
A character string that appears in messages during the specified FUNCTN (in this case PARSE). This
value will assist in recognizing which translator was executing during the specified FUNCTN.

FUNCTN=
The value PARSE tells SCLM that this program is to be invoked whenever you parse a module with
language FINNOGA.

Chapter 5. Language definition considerations 103

Defining a new language to SCLM

COMPILE=
Member name of the load module for the Finnoga 4 parser. Note that the keyword "COMPILE" actually
identifies the load module name of a translator (which may or may not be a compiler).

DSNAME=
Names the partitioned data set that contains the Finnoga 4 parser load module. DSNAME is required
when the data set containing the desired module is not in the system concatenation. DSNAME is
similar to a STEPLIB.

When more than one data set is to be searched, the TASKLIB parameter can be used in conjunction
with, or as a replacement for, the DSNAME parameter.

PORDER=
The value 1 tells SCLM that this program expects an options string but not a ddname substitution list.

OPTIONS=
Specifies the options string to be passed to the parser. Strings that start with @@FLM are SCLM
variables, and they are replaced by their current values before the string is passed to the parser.

Since the parser reads its source from a ddname, you must tell SCLM how to allocate that ddname. To do
this, use an FLMALLOC macro and an FLMCPYLB macro.

FLMALLOC TIOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

A description of the parameters follows:

Parameter
Description

IOTYPE=A
Tells SCLM to allocate a ddname to one, or a concatenation of, specific data set(s). Each of those data
sets are subsequently identified by using an FLMCPYLB macro.

DDNAME=
Identifies the ddname to be allocated.

@@FLMDSN(@@FLMMBR)
Identifies the member to be parsed. When the two SCLM variables are resolved, you get the member
of the data set in which you are interested.

Now you can tell SCLM how to invoke the Finnoga 4 compiler. To do so, use an FLMTRNSL macro followed
by one or more FLMALLOC and FLMCPYLB macros.

FLMTRNSL ~ CALLNAM='FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA40,
PORDER=3,
GOODRC=0,
OPTIONS="'SOURCE,NOMACRO,0BJ (@@FLMMBR), ',
PARMKWD=PARM1

OO0O0O0O0

You can specify only a few of the parameters and let SCLM supply default values for the others:
Parameter

Description
CALLNAM=

Names the compiler. This name appears in build messages.

FUNCTN=
Tells SCLM that this program gets invoked whenever you want to build a member with language
FINNOGA.

COMPILE=
Identifies the load module name for the Finnoga 4 compiler.

104 z/0S: z/0OS ISPF SCLM Guide and Reference

Defining a new language to SCLM

DSNAME=
If you do not specify a DSNAME value, SCLM assumes that the load module can be found in the
system concatenation.

PORDER=
The value 3 tells SCLM to pass an options string and a ddname substitution list to the Finnoga 4
compiler.

GOODRC=
The value 0 indicates that SCLM is to consider this build unsuccessful if the compiler completes with
any return code greater than 0.

OPTIONS=
Specifies the options string to be passed to the compiler. At compiler run time, the SCLM variable
@@FLMMBR is resolved to the member name being built.

PARMKWD=
The value PARM1 specifies the concatenation of the contents of the PARM1 parameters in the
architecture definition to the preceding options string. Use the PARM1 parameter to specify the
OPTIMIZE/NOOPTIMIZE option for each member. An example of this is provided later in this section.

As discussed previously, the Finnoga 4 compiler uses 7 ddnames and also supports a ddname
substitution list. The preceding parser invocation definition showed how to define a translator (the parser)
that does not use a ddname substitution list. The following SCLM FLMALLOC macros are used by SCLM to
construct the ddname substitution list shown in Table 14 on page 101.

When you use a ddname substitution list, you must define the ddnames in the order in which they are
expected to appear in the ddname substitution list by the translator. The first ddname defined is placed by
SCLM into position 1 in the ddname substitution list. The second ddname specified is placed into position
2 in the ddname substitution list, and so on.

Note that you do not have to specify any ddnames in the following example macros. SCLM will create
temporary unique ddnames and place them into the ddname substitution list positions. Because of the
way ddname substitution lists work, the compiler uses those temporary ddnames instead of the standard
documented ddnames (like SYSIN).

The first ddname in the Finnoga 4's ddname substitution list is SYSLIN. It is allocated to a partitioned data
set into which the compiler places the object module.

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB, LRECL=80, ©
RECNUM=5000

The parameters specified in this macro are described as follows:
Parameter
Description

IOTYPE=P
The compiler is written in such a way that a partitioned data set must be allocated to this ddname.
The compiler will write to a member of this partitioned data set. SCLM creates a temporary PDS and
allocates it to a temporary ddname (since no DDNAME keyword was specified).

This example illustrates two points. It shows how to define a temporary PDS for output from a
translator and emphasizes that each compiler (or parser) that you define to SCLM may be slightly
different from any other translator you have defined to SCLM.

Always refer to the translator documentation when defining a translator to SCLM.

KEYREF=0BJ
To save what is written to this ddname and keep it under SCLM control, SCLM must be able to
determine the member name and the SCLM-controlled data set name in which it is to save this output
module. If SCLM is building an architecture definition, it determines the project, group, type and
member as follows:
« The high-level qualifier is the project identifier that was previously specified.

« The group is the level at which the build is taking place. The group name is the second qualifier.

Chapter 5. Language definition considerations 105

Defining a new language to SCLM

« SCLM looks at the architecture definition being built and retrieves the member and type from the
architecture statement associated with the keyword OBJ. The type name is the third qualifier.

DFLTTYP=0BJ
To save what is written to this ddname and keep it under SCLM control, SCLM must be able to
determine the member name and the SCLM-controlled data set name in which it is to save this output
module. If SCLM is building a source member, it determines the project, group, type and member as
follows:

- The high-level qualifier is the project identifier that was previously specified.
- The group is the level at which the build is taking place.

« The type is the value of the DFLTTYP= keyword.

« The member name defaults to the name of the member being built.

If SCLM is building an architecture definition (and not a source member directly) then the DFLTTYP=
value is ignored. Instead, SCLM uses the type associated with the KEYREF= value.

RECFM=FB
Specifies the record format of the temporary data set that SCLM creates. In this example, the record
format is fixed block.

LRECL=80
Specifies the record length, in characters, of the temporary data set that SCLM creates.

RECNUM=5000
Tells SCLM to allocate enough space in this data set to hold 5000 records (records that are fixed block
and 80 characters in length).

Positions 2 and 3 in the ddname substitution list are not used. Create two FLMALLOC macros with
IOTYPE=N to tell SCLM to fill those name fields with hex zeros and to continue to the next ddname.

FLMALLOC IOTYPE=N
*

FLMALLOC IOTYPE=N

The ddname in position 4 of the ddname substitution list must be allocated to one or more partitioned
data sets. This ddname is used by the Finnoga 4 compiler to find included members. The FLMINCLS
macro described earlier needs to be referenced here to ensure that the compiler is picking up includes
from the correct data sets. Since IOTYPE=I allocations default to the default include set shown earlier,
this is automatically done. If another name was used on the FLMINCLS macro, that name needs to be
referenced here using the INCLS parameter. IOTYPE=I allocates a ddname with a concatenation of all the
PDS's in the hierarchy starting with the group specified for the BUILD and ending with the top, or
production level, group. First the hierarchy for the INCLUDE type is allocated, followed by the type of the
first SINCed member from the architecture definition, or, if no architecture definition is used, the type of
the member being built.

FLMALLOC IOTYPE=I,KEYREF=SINC

The parameters used with this macro are as follows:

Parameter
Description

IOTYPE=I
Allocate this ddname to a concatenation of SCLM-controlled data sets. The types used in the
concatenation are determined by the FLMINCLS macro referenced by the INCLS= parameter on the
FLMALLOC macro. In this case, there is no INCLS= parameter so the default FLMINCLS (or include set)
is used.

A hierarchy of data sets is concatenated for each type specified for the referenced FLMINCLS macro.
The hierarchy begins at the group where the build is taking place and extends to the top of the
project's hierarchy. In this case, the concatenation first contains all of the data sets for the INCLUDES
type followed by the data sets for the value substituted into the @@FLMTYP variable. See the

106 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a new language to SCLM

KEYREF= parameter to determine the value which is substituted into the @@FLMTYP and @@FLMETP
variables.

KEYREF=SINC
If you are building an architecture definition, refer to the first SINC statement in that architecture
definition for the type that is substituted into the @@FLMTYP macro. The value for @@FLMETP comes
from the EXTEND= parameter of the FLMTYPE macro for that type. If you are not building an
architecture definition, the type is the type of the member being built.

The next ddname in the ddname substitution list is allocated to the source to be compiled

FLMALLOC IOTYPE=S,KEYREF=SINC

The parameters used in the example are as follows:

Parameter
Description
IOTYPE=S
Tells SCLM to allocate a temporary sequential data set.
KEYREF=SINC
If you are building a source module directly, SCLM copies that member to this temporary data set. If

you are building a CC architecture definition, SCLM copies the members listed on the SINC statement
to this data set.

Next, define the SYSPRINT ddname to SCLM.

FLMALLOC TIOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125, ©
RECNUM=5000, PRINT=Y,DFLTTYP=FINLIST

This definition contains the following parameters:

Parameter
Description

IOTYPE=0
Specifies that the compiler writes to this ddname using a sequential data set. SCLM creates a
temporary sequential data set and allocates it to a temporary ddname (since this is part of a ddname
substitution list).

KEYREF=LIST
Refers SCLM to the LIST record in the architecture definition being built. That record contains the
member name and type into which the listing is saved after a successful build. (SCLM copies the data
from the temporary data sets into members of the PDS's controlled by SCLM after a successful build.)

DFLTTYP=FINLIST
Specifies the data set type into which this listing is written whenever a Finnoga 4 module is built
directly or when using INCLD in an architecture definition.

PRINT=Y
Specifies that this is a listing that should be copied to the Build List data set after the build process
completes.

Although the next position in the ddname substitution list is not used, you still need to tell SCLM what to
put there. Create another FLMALLOC with IOTYPE=N:

FLMALLOC IOTYPE=N

Next, specify the FINLIB data set allocation to SCLM. Specifically, indicate that the Finnoga 4 library
resides in a data set named SYS1.FINNOGA.LIB:

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

Chapter 5. Language definition considerations 107

Defining a new language to SCLM

Finally, note that position 9 in the ddname substitution list, like position 7, is not used:

FLMALLOC IOTYPE=N

The last two ddnames in the ddname substitution list for the Finnoga 4 compiler are temporary work data
sets. Use IOTYPE=W for temporary work data sets, such as SYSUT1, SYSUT2, and so on. In addition,
specify the record format and length of the two files, as shown in the following example:

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

When you have completed all these steps you will have a language definition similar to the following one.
(Figure 47 on page 109 contains comments to explain the flow of operations.) When you are ready to

reassemble your project definition, add a COPY statement in your main project definition file to include
these macros.

108 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a new language to SCLM

* FINNOGA 4 LANGUAGE DEFINITION
B R S S e S e

FLMLANGL LANG=FINNOGA,VERSION=FINN4

* TYPES TO SEARCH FOR INCLUDES
B S S e S e

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

* PARSE TRANSLATOR DEFINITION
B R S S e S e
*

FLMTRNSL CALLNAM="'FINNOGA PARSER',
FUNCTN=PARSE,
COMPILE=FINPARSE,
DSNAME=SCLM.PROJDEFS.LOAD,
PORDER=1,
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

* -- SOURCE --

FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMDSN(@@FLMMBR)
* BUILD TRANSLATOR DEFINITION
ek kkok ok ok k ok k ok ok ok ok
*

FLMTRNSL CALLNAM="'FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA40,
GOODRC=0,
PORDER=3,
OPTIONS='SOURCE,NOMACRO,0BJ(@FLMMBR), ',
PARMKWD=PARM1
* -- (1) OBJECT

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB,LRECL=80,
RECNUM=5000

x -- (2) NOT USED

FLMALLOC IOTYPE=N
* -- (3) NOT USED

FLMALLOC IOTYPE=N
* -- (4) INCLUDE LIBRARIES

FLMALLOC IOTYPE=I,KEYREF=SINC
* -- (5) SOURCE

FLMALLOC IOTYPE=S,KEYREF=SINC
x -- (6) LISTING

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125,
RECNUM=5000, PRINT=Y,DFLTTYP=FINLIST

Figure 47. Finnoga 4 Language Definition (Part 1 of 2)

Chapter 5. Language definition considerations 109

O0O0O0O0

OOO0O0O0

©

Showing users how to write CC architecture definitions

* -- (7) NOT USED

FLMALLOC IOTYPE=N%
* -- (8) FINNOGA COMPILER LIBRARIES

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

* -- (9) NOT USED

FLMALLOC IOTYPE=N
* -- (10) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
% -- (11) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 48. Finnoga 4 Language Definition (Part 2 of 2)

Showing users how to write CC architecture definitions

Once you have written the language definition, and assembled and link-edited the project definition, your
users can use SCLM to build their Finnoga 4 applications. To do so, however, they must know what
information to supply in their architecture definitions. Table 15 on page 110 lists the SCLM-controlled
inputs and outputs for the Finnoga 4 build. It includes the ddnames of the data sets that are input to and
output from the Finnoga 4 compiler. In addition, a KEYREF value and brief description of each ddname is
given.

Table 15. DDnames and KEYREFs

ddname KEYREF Description of data set(s) allocated

SYSLIN 0oBJ A partitioned data set into which the Finnoga 4 compiler writes the
object module. The OBJ keyword in the compiler's option string
specifies the member name to use.

SYSLIB SINC One or more partitioned data sets through which the Finnoga 4
compiler searches for include members.

SYSIN SINC A sequential data set that contains Finnoga 4 source to be compiled.

SYSPRINT LIST A sequential listings data set. The Finnoga 4 compiler writes out a

copy of the source that was compiled along with any error, warning,
and informational messages.

In addition, the PARM1 parameter is used in the FLMTRNSL macro for the Finnoga 4 compiler.

When your users write CC architecture definitions for their Finnoga 4 applications, they must include each
of the preceding KEYREFs. A typical Finnoga 4 CC architecture definition looks like this:

SINC PROG SOURCE
SINC SUB1 SOURCE
0BJ PROG 0BJ
LIST PROG FINLIST
PARM1 OPTIMIZE

This CC architecture definition, along with the language definition previously written, tells SCLM to
compile the concatenation of Finnoga 4 members PROG and SUB1 in data set type SOURCE. The resulting
object module and listing are to be saved in data set types OBJ and FINLIST, respectively. When the
source is compiled, you want to use the OPTIMIZE compiler option.

110 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a preprocessor to SCLM

You do not have to specify the modules that are included from ddname SYSLIB. Simply allocate SYSLIB to
the proper libraries (with an IOTYPE=I) and the compiler will find the included members.

This simple template is all you have to give to your users. When they edit their Finnoga 4 source, they
need to specify FINNOGA as the language name. Then they create their architecture definitions like the
preceding one. SCLM and the language definition you created will perform the rest of the work.

Convert your JCL decks to architecture definitions

Suppose your Finnoga 4 users have a library of JCL that they have been using to compile their Finnoga 4
source. The following example uses a sample Finnoga 4 compile job and shows how you would write an
architecture definition with the information in the JCL. The JCL deck that you use might look like this:

//30B ...
//FINNOGA EXEC PGM=FNGAA40,
// PARM="'SOURCE, NOMACRO, 0BJ (PROG1) ,NOOPTIMIZE'

//SYSLIN DD DSN=USERO2.PRIVATE.O0BJ,DISP=0LD

//SYSLIB DD DSN=USERO2.PRIVATE.FINNOGA,DISP=SHR

//SYSIN DD DSN=USERO2.PRIVATE.FINNOGA(MAIN),DISP=SHR

// DD DSN=USERO2.PRIVATE.FINNOGA(SUB1) ,6DISP=SHR

// DD DSN=USERO2.PRIVATE.FINNOGA(SUB2),DISP=SHR
//SYSPRINT DD SYSOUT=A

//FINLIB DD DSN=SYS1.FINNOGA.LIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),
// SPACE=(TRK, (10,10))

//SYSUT2 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),
// SPACE=(TRK, (10,10))

In this example, you want SCLM to control the modules that are input or output through ddnames SYSIN,
SYSLIN, and SYSPRINT. For the Finnoga 4 language definition, the keywords SINC, OBJ and LIST have
been assigned to those modules. You create the architecture definition by listing the modules involved in
the build and identifying their roles with the keywords SINC, OBJ, and LIST. In addition, you tell SCLM to
concatenate the NOOPTIMIZE option to the end of the OPTIONS string being passed to the translator
using the PARM1 keyword.

SINC MAIN SOURCE
SINC SUB1 SOURCE
SINC SUB2 SOURCE
0BJ PROG1 0BJ
LIST MAIN FINLIST
PARM1 NOOPTIMIZE

Now you are prepared to move this application under SCLM control:

1. Copy the members MAIN, SUB1, and SUB2 from 'USER02.PRIVATE.FINNOGA' to a development group
in the SCLM project hierarchy. In this example, the data set type is SOURCE. Also copy over any
included source members.

2. Use the SCLM Migration Utility to migrate your source members using the language name FINNOGA
(the name specified on the FLMLANGL macro).

3. Use the SCLM editor to create the architecture definition. Unless you have modified the ARCHDEF
language definition, the language of this architecture definition should be ARCHDEF. SCLM asks for the
language name when you first enter the SAVE or END edit command.

Your user is now ready to compile this application using SCLM. The source members are under SCLM
control as are the architecture definitions. The object module and the Finnoga 4 listing have not yet been
created. To build this application, select Build (option 10.4) from the SCLM Main Menu and enter the
project, group, type, and member name of the architecture definition (ARCHDEF).

Defining a preprocessor to SCLM

Suppose that some of your Finnoga 4 users run a preprocessor step on their Finnoga 4 source before
compiling it. How do you define that two-step build process to SCLM? Using another fictitious product, the
Panda Universal Preprocessor (PUPP), you can specify that some Finnoga 4 source is to be run through
PUPP before it gets compiled.

Chapter 5. Language definition considerations 111

Defining a preprocessor to SCLM

Again, you need to list the ddnames used by the translator you want to define. In this case, assume that
PUPP uses three ddnames:

Table 16. DDnames Used by a Hypothetical Preprocessor

DDname Description of file(s) allocated
SYSIN A sequential data set containing the Finnoga 4 source to be preprocessed.
SYSOUT A sequential data set to which the preprocessed Finnoga 4 source is written. You

want to compile the contents of this data set.

SYSPRINT A listing data set containing Panda Universal Preprocessor messages and warnings.

In this example, the ddnames are not numbered because you will not use the PUPP ddname substitution
list. Instead, you will use the ddname substitution list supported by the Finnoga 4 compiler to link the two
build steps together.

Your users want SCLM to keep the listing data set produced by PUPP, but they do not want to keep the
intermediate copy of the preprocessed source (the output in SYSOUT). The preprocessed source should
be passed to the Finnoga 4 compiler and then deleted.

Because you want to preprocess some but not all of the Finnoga 4 source, you should define two different
build processes to SCLM. You have already defined the latter build process (for language FINNOGA), and
you will not change that language definition. For the two-step build process, however, you will create a
new language definition with a different language name. The users must assign the correct language
name to each Finnoga 4 source member.

The new language definition is very much like the first language definition, so you can copy the first
definition into a second PROJDEFS.SOURCE member and modify it there.

The new language definition (copied from the first definition) has two FLMTRNSL macros: one for the
parser, and the other for the Finnoga 4 compiler. You will add a third FLMTRNSL for the preprocessor,
using the same macros and keywords as you used in the previous example. Enter this example before the
FLMTRNSL for the Finnoga 4 compiler and after the last FLMALLOC for the parser. The order of execution
is then parse, preprocess, and compile.

FLMTRNSL ~ CALLNAM='PANDA U PREP',
FUNCTN=BUILD,
COMPILE=PANDAO1,

GOODRC=0,
PORDER=1,
OPTIONS='NOTRACE'

OO0O0O0

*

-- SOURCE
FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN
* -- PREPROCESSED SOURCE

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C
DDNAME=SYSOUT

* -- LISTING
FLMALLOC TIOTYPE=0,KEYREF=0UT1,RECFM=VBA,LRECL=125, ©

RECNUM=5000, PRINT=Y,DFLTTYP=PUPLIST, DDNAME=SYSPRINT
*

Figure 49. Panda Universal Preprocessor

The following list describes the keywords that change so you can invoke the new language definition:

Keyword
Description

112 z/0S: z/OS ISPF SCLM Guide and Reference

Defining a preprocessor to SCLM

FUNCTN=
Identifies this translator as a build translator. There are now two build translators in this language
definition: one for PUPP and one for the Finnoga 4 compiler. Define the PUPP translator first and the
Finnoga 4 translator second to tell SCLM the order in which the translators are to be invoked.

OPTIONS=
Specifies the options string to be passed to the PUPP compiler. In this case, you do not want the trace
option activated.

DDNAME=
Specify the DDNAME= keyword because you are not using a ddname substitution list to pass ddnames
to PUPP. This parameter specifies which ddnames to allocate (the ddnames that PUPP uses).

IOTYPE=W
Specifies that ddname SYSOUT is to be allocated as a work file. In this example, the users do not want
to save the processed source. When the build completes, this file is deleted. In a later step, this file is
passed to the Finnoga 4 compiler.

KEYREF=0UT1
Specifies that the listing PUPP writes to ddname SYSPRINT is to be saved under SCLM control. You
usually use KEYREF=LIST for this purpose. However, KEYREF=LIST is already being used by the
translator definition for the Finnoga 4 compiler. Because you have already used the standard set of CC
ARCHDEF keywords, you must use the OUTx keywords.

OUTx keywords are used to identify additional build outputs. You can use OUTO, OUTY, ...,0UT9 to
specify additional outputs that SCLM is to control.

PRINT=Y
This listing and the Finnoga 4 listing are both written to the build listing data set.

Passing the source to the compiler

You must next make one change to the macros that define how to invoke the Finnoga 4 compiler. The
source to be compiled no longer comes directly from the SCLM-controlled source libraries. Instead, you
want SCLM to take the preprocessed source that PUPP writes to ddname SYSOUT and pass it to the
Finnoga 4 compiler. This requires a change to the FLMALLOC macro that defines the ddname that gets put
into the SYSIN position in the ddname substitution list for the Finnoga 4 compiler. The new macro is
illustrated as follows:

*

* -- (5) SOURCE
*

FLMALLOC IOTYPE=U,DDNAME=SYSOUT

You use a different IOTYPE value (IOTYPE=U) to indicate that the ddname to be placed in the ddname
substitution list has already been allocated in a previous build step. In this case, DDNAME=SYSOUT tells
SCLM to place the name SYSOUT in position 5 of the ddname substitution list and go on to the next
ddname. When the Finnoga 4 compiler runs, it reads the source from ddname SYSOUT.

The new language definition is shown in Figure 50 on page 114. Note that the new language has been
specified on the FLMLANGL macro.

Chapter 5. Language definition considerations 113

Defining a preprocessor to SCLM

* FINNOGA 4 LANGUAGE DEFINITION
B R S S e S e

FLMLANGL LANG=FINPUPP,VERSION=FINN4

TYPES TO SEARCH FOR INCLUDES
B S S e S e

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

FLMTRNSL ~ CALLNAM='FINNOGA PARSER',
FUNCTN=PARSE,
COMPILE=FINPARSE,
DSNAME=SCLM.PROJDEFS.LOAD,
PORDER=1,
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*

-- SOURCE --

FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMDSN(@@FLMMBR)
*
ok ok
* BUILD TRANSLATOR DEFINITION

* PREPROCESSOR STEP
FLMTRNSL ~ CALLNAM='PANDA U PREP',

FUNCTN=BUILD,

COMPILE=PANDAQ1,

GOODRC=0,

PORDER=1,

OPTIONS='NOTRACE'
* -- SOURCE

FLMALLOC IOTYPE=S,KEYREF=SINC, DDNAME=SYSIN

* -- PREPROCESSED SOURCE

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000,
DDNAME=SYSOUT

* -- LISTING

FLMALLOC IOTYPE=0,KEYREF=0UT1,RECFM=VBA,LRECL=125,
RECNUM=5000, PRINT=Y,DFLTTYP=PUPLIST, DDNAME=SYSPRINT

*

COMPILE STEP

FLMTRNSL CALLNAM="'FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA4Q,
GOODRC=0,
PORDER=3,
OPTIONS="'SOURCE,NOMACRO,0BJ(@FLMMBR) ',
PARMKWD=PARM1

Figure 50. Finnoga/PUPP Language Definition (Part 1 of 2)

114 z/0S: z/OS ISPF SCLM Guide and Reference

OO0O0O0

OOO0O0

OOO0O0O0

Converting JCL to SCLM language definitions

* -- (1) OBJECT

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB, C
LRECL=80, RECNUM=5000

* -- (2) NOT USED
FLMALLOC IOTYPE=N
% -- (3) NOT USED
FLMALLOC IOTYPE=N
% -- (4) INCLUDE LIBRARIES
FLMALLOC IOTYPE=I,KEYREF=SINC
* -- (5) SOURCE
FLMALLOC IOTYPE=U,DDNAME=SYSOUT
* -- (6) LISTING

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125, C
RECNUM=5000, PRINT=Y,DFLTTYP=FINLIST

* -- (7) NOT USED
FLMALLOC IOTYPE=N
x -- (8) FINNOGA COMPILER LIBRARIES

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

* -- (9) NOT USED

FLMALLOC IOTYPE=N
* -- (10) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
% -- (11) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 51. Finnoga/PUPP Language Definition (Part 2 of 2)
The following example illustrates an architecture definition to build a program using two translators:

SINC PROG7 SOURCE
0BJ PROG7 0BJ
LIST PROG7 FINLIST
ouT1l PROG7 PUPLIST
PARM1 NOOPTIMIZE

Figure 52. Architecture Definition Example

The only difference between this architecture definition and the Finnoga 4 CC architecture definition is the
presence of the OUT1 keyword. This keyword specifies the type and member into which the PUPP listing
is saved. In addition to specifying the OUT1 keyword in their architecture definitions, users who use this
language definition to build their Finnoga 4 source must also remember to specify the language name
FINPUPP for that Finnoga 4 source in the FLMLANGL macro statement.

Converting JCL to SCLM language definitions

Many sites use Job Control Language (JCL) to run preprocessors, compilers, linkage editors, and other
tools used in the development process. SCLM supports developers and project managers through the use
of language definitions that tell SCLM how to parse, build, and promote members of an SCLM-controlled

Chapter 5. Language definition considerations 115

Converting JCL to SCLM language definitions

data set. Language definitions can also specify additional translators to execute for the COPY, PURGE, and
VERIFY functions. Because the SCLM language definitions provide an easier method of implementing
processing control than JCL does, many sites have found it beneficial to convert their JCL to SCLM
language definitions. To ease the conversion process, SCLM provides sample language definitions that you
can tailor to the special needs of your site.

This section explains how to construct SCLM language definitions to replace existing JCL decks. Examples
illustrate the basic principles underlying a successful migration from JCL to SCLM and also demonstrate
methods for avoiding potential problems and conflicts.

Before you begin

Before you try to convert your existing JCL decks to SCLM language definitions, you must obtain and
review "expanded" listings of the JCL. The "expanded JCL" listings allow you to determine the actual
values of the symbolic parameters in the JCL; these values include data set names, options, and other
information that is required for successful translation to an SCLM language definition. You will also need
to know the order in which programs are executed in the JCL, and the condition codes that are expected
from each program. Your system administrator should be able to help you locate this information.

You should also review the information in Chapter 21, “SCLM macros,” on page 487, paying special
attention to the following macros and their parameters:

FLMTRNSL
FLMTCOND
FLMALLOC
FLMCPYLB
FLMINCLS
FLMTOPTS

Capabilities and restrictions

There are two basic equivalencies that you will use to convert JCL cards to SCLM macro statements:

« Every JCL EXEC card with PGM=abc will correspond to an FLMTRNSL macro with COMPILE=abc in your
language definition. Conditional execution of BUILD translators may be addressed through use of the
FLMTCOND macro.

« Every JCL DD card will correspond to an FLMALLOC macro or an FLMSYSLB macro associated with an
FLMALLOC macro in your language definition.

In the case of STEPLIB, the JCL DD card will correspond to the DSNAME parameter in the FLMTRNSL
macro. A STEPLIB concatenation of more than one data set would use the TASKLIB parameter. The
TASKLIB parameter is set to the ddname associated with the data set concatenation. FLMCPYLBs are
used to specify the data sets on an FLMALLOC macro with DDNAME set to the TASKLIB ddname. When
both DSNAME and TASKLIB are specified, the DSNAME data set is searched first, followed by the
TASKLIB data sets, followed by the system concatenation.

In the case of SYSLIB-type ddnames for a compiler, the data sets must be specified FLMSYSLBs. Then
either ALCSYSLB=Y must be specified on the FLMLANGL macro and/or FLMCPYLBs must be specified
for the appropriate FLMALLOC macros. For an example of this, refer to the COBOL (FLM@COB?2) or
C/370 (FLM@C370) language definitions supplied with SCLM.

Three areas of restrictions can prevent a simple, one-to-one translation of JCL cards to SCLM macro
statements:

« Backward referencing of data definition names (DDs)

If a JCL DD card uses the "refer back" technique to reference a previous DD card (other than the card in
the preceding step), or if a DD card refers to a data set using a ddname that differs from the data set's
ddname in a prior step, conversion to an SCLM language definition can involve the use of an
intermediate translator or a ddname substitution list in order to allocate the correct data set name for

116 z/0S: z/OS ISPF SCLM Guide and Reference

Converting JCL to SCLM language definitions

the program. (An intermediate translator is not needed if the succeeding translator supports DDNAME
substitution lists; in this case, the succeeding translator can "hard code" the DDNAME and use
IOTYPE=U on the FLMALLOC macro.)

« Complex conditional execution

A JCL deck that specifies skipping all steps after a specified condition code from one or more previous
steps is directly converted to appropriate FLMTRNSL macros with appropriate GOODRC values. Other
conditional executions of BUILD translators can be addressed by using the FLMTCOND macro. For
example, if the JCL is set up to run BUILD translator X if any previous return code is 4, but run Build
translator Y if any previous return code is 8, you can use the FLMTCOND macro. FLMTCOND is only valid
for use with BUILD translators. Conditional execution of non-BUILD translators can require modification
of the translators or interface programs to handle the control of execution.

« TSO Address Space compatibility

Some programs that run from JCL will not run in the TSO Address Space in which SCLM resides without
a special interface translator. IBM has provided interface programs for several common IBM programs
with this characteristic. For example, the FLMTMSI (SCRIPT), FLMTMJI (JOVIAL), and FLMTMMI
(DFSUNUBDO) translators all use the TSO Service Facility IKJEFTSR.

If you have JCL that runs program XYZ without any errors, but fails when you try to run program XYZ
from an FLMTRNSL macro, this may be the problem. You must write a translator to call the program
using IKJEFTSR.

The following sections describe how to convert JCL cards and decks into functionally equivalent SCLM
language definitions and provide suggested strategies for working around restrictions and conflicts.
Converting JCL cards to SCLM macro statements

This section contains examples of JCL decks and their SCLM language definition equivalents.

Executing programs

The SCLM FLMTRNSL macro is similar to a JCL EXEC (EXECUTE) card. Figure 53 on page 117 shows a
single JCL card that runs a program named IEFBR14.

//STEP1 EXEC PGM=IEFBR14
Figure 53. JCL: Execute IEFBR14

Figure 54 on page 117 shows an SCLM FLMTRNSL macro that performs the same task as the JCL card in
Figure 53 on page 117.

FLMTRNSL ~ COMPILE=IEFBR14,FUNCTN=BUILD,PORDER=0
Figure 54. SCLM: Execute IEFBR14

FLMTRNSL's COMPILE option specifies the name of the program to execute (IEFBR14). The FUNCTN
parameter specifies here that IEFBR14 will be invoked when the user requests a BUILD, and the PORDER
value of 0 tells SCLM that neither an option list nor a ddname substitution list will be passed to IEFBR14.

The next figure is a slightly more complex example. We want to use a translator program named GAC to
copy the contents of TSOSCxx.DEV1.SOURCE(MEMBER1) into TSOSCxx.DEV1.LIST(MEMBER1). The GAC
program itself requires a SYSIN data set, which is empty in this example.

//STEP1 EXEC PGM=GAC

//SYSIN DD DUMMY
//INPUT DD DSN=TSOSCxx .DEV1.SOURCE (MEMBER1) , DISP=SHR
//OUTPUT DD DSN=TSOSCxx.DEV1.LIST (MEMBER1) ,DISP=SHR

Figure 55. JCL: Execute GAC

Chapter 5. Language definition considerations 117

Converting JCL to SCLM language definitions

Figure 56 on page 118 shows the SCLM language definition that performs the same task as the JCL in
Figure 55 on page 117.

FLMTRNSL COMPILE=GAC,FUNCTN=BUILD,PORDER=0
FLMALLOC IOTYPE=A,DDNAME=SYSIN

FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=INPUT

FLMCPYLB TSOSCxx.DEV1.SOURCE (MEMBER1)
FLMALLOC IOTYPE=A,DDNAME=0OUTPUT

FLMCPYLB TSOSCxx.DEV1.LIST(MEMBER1)

Figure 56. SCLM Language Definition: Execute GAC

As before, the FLMTRNSL macro is used to specify the name of the program to run. The FLMALLOC and
FLMCPYLB statements allocate the existing data sets to ddnames.

Conditional execution

In Figure 57 on page 118, program XYZ runs only if the return code from program ABC is less than five.

//STEP1 EXEC PGM=ABC
//STEP2 EXEC PGM=XYZ,COND=(4,LT)

Figure 57. JCL: Conditional Execution

In SCLM, the GOODRC parameter on the FLMTRNSL macro allows you to specify return code values for
conditional execution. In Figure 58 on page 118, the GOODRC parameter for program ABC is set to 4. If
ABC ends with a return code greater than four, processing ends; program XYZ will not execute.

FLMTRNSL COMPILE=ABC,FUNCTN=BUILD,PORDER=0,GOODRC=4
FLMTRNSL COMPILE=XYZ,FUNCTN=BUILD, PORDER=0

Figure 58. SCLM Language Definition: Conditional Execution

In Figure 59 on page 118, program XYZ runs only if the return code from program ABC is less than 5.
Program MBS is to execute after program XYZ regardless of the previous return codes.

//STEP1 EXEC PGM=ABC
//STEP2 EXEC PGM=XYZ,COND=(4,LT)
//STEP3 EXEC PGM=MBS

Figure 59. JCL: Complex Conditional Execution

In SCLM, the GOODRC parameter on the FLMTRNSL macro specifies when to skip all remaining translators
in the language definition. To skip selected translators, the FLMTCOND macro can be used. In Figure 60
on page 118 the FLMTCOND macro specifies that execution may skip program XYZ but continue with
program MBS.

FLMTRNSL ~ COMPILE=ABC,FUNCTN=BUILD, PORDER=0

FLMTRNSL ~ COMPILE=XYZ,FUNCTN=BUILD,PORDER=0
FLMTCOND ACTION=SKIP,WHEN=(*,GE,5)

FLMTRNSL ~ COMPILE=MBS, FUNCTN=BUILD, PORDER=0

Figure 60. SCLM Language Definition: Complex Conditional Execution

Sample JCL conversion

This section contains commented sample JCL and language definitions that perform the same tasks:
invoking the CICS preprocessor and then invoking the OS COBOL compiler to produce an object module.
Figure 61 on page 121 contains the JCL used to accomplish these tasks; Figure 63 on page 123 contains
the equivalent SCLM language definition. Each sample contains comments with step numbers. The step
descriptions that follow relate a line or command from the JCL to the equivalent SCLM language definition
macro, option, or command.

1. The JCL has a job step named TRN, which is the first translator called in this job.

118 z/0S: z/OS ISPF SCLM Guide and Reference

10.

11.

12.

13.

14.

Converting JCL to SCLM language definitions

SCLM uses an FLMTRNSL macro to call this translator. This is the first FLMTRNSL macro for build in
the language definition.

. Job step TRN executes a program called DFHECP1$, the CICS preprocessor for COBOL.

SCLM uses the COMPILE=DFHECP1$ statement on the FLMTRNSL macro.

. The STEPLIB line in job step TRN tells the job where to find the program DFHECP1$.

SCLM uses the DSNAME option on the FLMTRNSL macro. Both the STEPLIB and DSNAME point to the
same data set, CICS.TS31.CICS.SDFHLOAD.

. The SYSIN statement defines the data set that contains the member to compile.

SCLM uses an FLMALLOC macro to allocate the SYSIN data set to a ddname for the CICS
preprocessor. Because we are using PORDER=1, the FLMALLOC macro assigns the ddname, SYSIN,
that the CICS preprocessor is expecting.

. The TRN job step sends the preprocessor listing to the printer using the SYSPRINT statement.

SCLM uses an FLMALLOC macro to allocate an output data set to the ddname SYSPRINT.

. The SYSPUNCH line in the TRN step creates the output of the CICS preprocessor and passes it to the

next job step (COB) as a temporary file.

SCLM uses an FLMALLOC macro with IOTYPE=W to allocate a work (temporary) file with the ddname
of SYSPUNCH. This work file is passed to the next job step (FLMTRNSL).

. The JCL has a job step named COB, which is the second translator called in this job.

SCLM uses an FLMTRNSL macro to call this translator. This is the second FLMTRNSL macro for build
in our language definition.

. The job step COB executes (EXEC PGM=) a program called IGYCRCTL, the compiler for COBOL.

SCLM uses the COMPILE=IGYCRCTL statement on the FLMTRNSL macro.

. To pass compiler options to the OS COBOL compiler, the COB job step uses a PARM= command.

SCLM uses the OPTIONS= statement on the FLMTRNSL macro to perform the same task.

This job has conditional execution for the COB step via the COND(5,LE) JCL command. The COB step
will not execute if the return code of the TRN step is greater than 4.

SCLM sets the GOODRC keyword parameter for the TRN step (CICS preprocessor) equal to 4. Build
halts execution of all translators following the TRN step in the language definition if the return code
from the TRN step is greater than 4.

The STEPLIB statement in job step COB tells the job where to find the program IGYCRCTL.

SCLM uses the DSNAME= option on the FLMTRNSL macro. Both the STEPLIB and DSNAME point to
the same data set, IGY.SIGYCOMP.

The SYSLIB statement in job step COB tells the job where to find the system type includes.

The language definition uses the FLMSYSLB macro with IOTYPE=I and the FLMINCLS macro to do the
same task.

SCLM allocates these project data sets allocated for IOTYPE=I before the data sets on the FLMCPYLB
macro(s). ALCSYSLB=Y parameter must be specified on the FLMLANGL macro to ensure that the
FLMSYSLB data sets are allocated to the IOTYPE=I ddnames.

Because PORDER=3 is being used, the SYSLIB DD is the fourth ddname passed to the compilerin a
ddname substitution list. The COBOL compiler uses the fourth ddname as SYSLIB no matter what
value is assigned to the DDNAME keyword parameter on the FLMALLOC macro.

For each system library specified for the SYSLIB DD, the language definition has an FLMSYSLB macro.
In this case both CICS.TS31.CICS.SDFHCOB and CICS.TS31.CICS.SDFHMAC are specified.

The COB job step sends the compile listing to the printer using the SYSPRINT statement.
SCLM uses an FLMALLOC macro to allocate an output data set to the ddname SYSPRINT.

Chapter 5. Language definition considerations 119

Converting JCL to SCLM language definitions

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

In the COB job step, the SYSIN DD statement identifies the data set that contains the member to
compile. This is the output of the CICS preprocessor step TRN.

SCLM uses an FLMALLOC macro with IOTYPE=U to refer to a ddname from a prior step. The language
definition instructs MVS to allocate the data set assigned in the TRN step to the ddname SYSPUNCH.

The SYSLIN statement in the COB step identifies the output data set for object code created by the
COBOL compiler.

The language definition uses an FLMALLOC macro with IOTYPE=0 to allocate an output file. This
FLMALLOC macro is the first in the COB FLMTRNSL because when using PORDER=3, the COBOL
compiler expects the output data set ddname to be first in a ddname substitution list.

The COB step allocates SYSUT1 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the eighth file provided to the COBOL compiler because PORDER=3 tells SCLM that we are
using a ddname substitution list.

The COB step allocates SYSUT2 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the ninth file provided to the COBOL compiler because we are using a ddname substitution
list.

The COB step allocates SYSUT3 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the tenth file provided to the COBOL compiler because we are using a ddname substitution
list.

The COB step allocates SYSUT4 as a temporary work file for the COBOL compiler. SCLM's language
definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This must be the 11th
file provided to the COBOL compiler because we are using a ddname substitution list.

The COB step allocates SYSUT5 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the 13th file provided to the COBOL compiler because we are using a ddname substitution
list.

The COB step allocates SYSUT6 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the 14h file provided to the COBOL compiler because we are using a ddname substitution
list.

The COB step allocates SYSUT7 as a temporary work file for the COBOL compiler.

SCLM's language definition uses an FLMALLOC macro with IOTYPE=W to perform the same task. This
must be the 15th file provided to the COBOL compiler because we are using a ddname substitution
list.

SCLM language definition only

The language definition uses PORDER=3 for the COBOL compiler step (COB) to use a ddname
substitution list. A ddname substitution list provides an ordered list(defined by the translator) of
ddnames such that the position of a ddname in the list, and not the actual ddname, is used by the
translator for a specific file.

The input file for the compiler must be the output file from the CICS preprocessor. The ddname
assigned to the TRN step is SYSPUNCH. Because this file has already been allocated to SYSPUNCH,
another way (besides ddname) is needed to pass this file as the input to the compiler. By using
PORDER=3, SCLM passes all the files that can be used by the COBOL compiler in the order specified
for this compiler. To use PORDER=3, a specific parameter string must be built. The language
definition must have an FLMALLOC macro for each of these parameters

120 z/0S: z/OS ISPF SCLM Guide and Reference

Converting JCL to SCLM language definitions

Those FLMALLOCs that are tagged for STEP 24 are not applicable for the COBOL compiler. SCLM
places 8 bytes of hexadecimal zeros into the ddname substitution list for each FLMALLOC with
IOTYPE=N.

//USERIDC JOB (ASO5CR,T12,C531), 'USERID',NOTIFY=&SYSUID,CLASS=A,

// MSGCLASS=0,MSGLEVEL=(1,1)

/1%

//* THIS PROCEDURE CONTAINS 2 STEPS

//* 1. EXEC THE CICS PREPROCESSOR

//* 2. EXEC THE Enterprise COBOL COMPILER

/7%

//* CHANGE THE JOB NAME AND THE ACCOUNTING INFORMATION TO MEET THE
//* REQUIREMENTS OF YOUR INSTALLATION.

/7%

//* CHANGE 'PROGNAME' TO THE NAME OF THE CICS/COBOL PROGRAM YOU
//* WANT TO COMPILE. CHANGE 'USERID' TO YOUR USERID.

/7%

//* CHANGE 'DEVL' TO THE GROUP THAT CONTAINS THE PROGRAM TO BE COMPILED.
/1%

//* STEP 1: TRN STATEMENT; STEP 2: EXEC PGM STATEMENT

/1%

//TRN EXEC PGM=DFHECP1$,

// REGION=2048K

/1%

//* STEP 3: STEPLIB STATEMENT

/1%

//STEPLIB DD DSN=CICS.TS31.CICS.SDFHLOAD,DISP=SHR

/1%

//* STEP 4: SYSIN STATEMENT

;;gYSIN DD DSN=USERID.DEVL.SOURCE (PROGNAME) ,DISP=SHR
;;: STEP 5: SYSPRINT STATEMENT

;;gYSPRINT DD SYSOUT=A

;;: STEP 6: SYSPUNCH STATEMENT

;;gYSPUNCH DD DSN=&&SYSCIN, ;

// DISP=(,PASS),UNIT=SYSDA,

// DCB=BLKSIZE=400,

// SPACE= (400, (400,100))

//*

//* STEP 7: COB STATEMENT; STEP 8: EXEC PGM STATEMENT

Figure 61. JCL: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)

Chapter 5. Language definition considerations 121

Converting JCL to SCLM language definitions

//* STEP 9: PARM STATEMENT; STEP 10: COND STATEMENT
/1%
//COB EXEC PGM=IGYCRCTL,REGION=2048K,COND=(5,LE),

/1] PARM="'RENT,NODYNAM, LIB'
/1%

//* STEP 11: STEPLIB STATEMENT

/1%

//STEPLIB DD DSN=IGY.SIGYCOMP.DISP=SHR
/1%

//* STEP 12: SYSLIB STATEMENT; STEP 13: DD STATEMENT
/1%
//SYSLIB DD DSN=CICS.TS31.SDFHCOB,DISP=SHR

/1] DD DSN=CICS.TS31.SDFHMAC,DISP=SHR
/1%

//* STEP 14: SYSPRINT STATEMENT

/1%

//SYSPRINT DD SYSOUT=0

/1%

//* STEP 15: SYSIN STATEMENT

;;gYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)

;;: STEP 16: SYSLIN STATEMENT

;;gYSLIN DD DSN=USERID.DEVLEV.0BJ(PROGNAME) ,DISP=SHR
;;: STEP 17: SYSUT1 STATEMENT

;;gYSUTl DD UNIT=SYSDA,SPACE=(460, (350,100))

//* STEP 18: SYSUT2 STATEMENT
//SYSUT2 DD UNIT=SYSDA, SPACE=(460, (350,100))
//* STEP 19: SYSUT3 STATEMENT

//SYSUT3 DD UNIT=SYSDA, SPACE=(460, (350,100))
;;I STEP 20: SYSUT4 STATEMENT
;;gYSUTA DD UNIT=SYSDA,SPACE=(460, (350,100))
;;: STEP 21: SYSUT5 STATEMENT
;;gYSUTS DD UNIT=SYSDA,SPACE=(460, (350,100))
;;: STEP 22: SYSUT6 STATEMENT
;;gYSUTé DD UNIT-SYSDA,SPACE=(460, (350,100))
;;I STEP 23: SYSUT7 STATEMENT
;;gYSUT7 DD UNIT=SYSDA,SPACE=(460, (350,100))

Figure 62. JCL: Invoke COBOL Preprocessor and Compiler (Part 2 of 2)

122 7/0S: z/OS ISPF SCLM Guide and Reference

Converting JCL to SCLM language definitions

SCLM LANGUAGE DEFINITION FOR
COBOL WITH CICS 3.1 PREPROCESSOR

CICS OUTPUT IS PASSED VIA THE CICSTRAN DD ALLOCATION TO COBOL.

POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.

CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.

ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS

* LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.
B S S S e e T e e
*

*STEP 13

COBCICS FLMSYSLB CICS.TS31.CICS.SDFHCOB

FLMSYSLB CICS.TS31.CICS.SDFHMAC

* % ok kK ok X ok *

*

FLMLANGL LANG=COBCICS,VERSION=CICS31,ALCSYSLB=Y
*

*

PARSER TRANSLATOR

FLMTRNS CALLNAM='SCLM COBOL PARSE', C
FUNCTN=PARSE, ©
COMPILE=FLMLPCBL, C
PORDER=1, C
OPTIONS=(@@FLMLIS,@@FLMSTP,@Q@FLMSIZ,)

* (* SOURCE =*)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD TRANSLATORS

* - CICS PRECOMPILE - STEP NAME TRN

*

* STEP 1

FLMTRNSL CALLNAM='CICS PRE-COMPILE', ©

FUNCTN=BUILD, C
* STEP 2

COMPILE=DFHECP1$, ©
* STEP 3 (x STEPLIB %)

DSNAME=CICS.TS31.CICS.SDFHLOAD, C

VERSION=3.1, ©
* STEP 10 (% COND %)

GOODRC=4, C

PORDER=1 ©

OPTIONS=(NOSEQ)
* STEP 4 (% SYSIN *)
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C
DDNAME=SYSIN
* STEP 5 (% SYSPRINT x)
FLMALLOC IOTYPE=0,RECFM=FBA,LRECL=121, C
RECNUM=35000, PRINT=Y, DDNAME=SYSPRINT

* STEP 6 (* SYSPUNCH x)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, ©
RECNUM=5000, DDNAME=SYSPUNCH

* STEP 7 (xCOBOL INTERFACE - STEP NAME COB x)
* STEP

(0]

FLMTRNSL CALLNAM='COBOL COMPILE',
FUNCTN=BUILD,
COMPILE=IGYCRCTL,

OO0

Figure 63. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)

Chapter 5. Language definition considerations 123

Converting JCL to SCLM language definitions

* STEP 11 (% STEPLIB %)
DSNAME=IGY.SIGYCOMP,
VERSION=3.3.1,
GOODRC=4,
* STEP 24
PORDER=3,
* STEP 9 (% PARMS %)
OPTIONS=(RENT,NODYNAM, LIB)
* DDNAME ALLOCATIONS
* STEP 16
* 1 (% SYSLIN =)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C
RECNUM=5000,DFLTTYP=0BJ

(@] (@] OO0

* STEP 24
* 2 (% N/A %)
FLMALLOC IOTYPE=N
* STEP 24
* 3 (% N/A %)
FLMALLOC IOTYPE=N
* STEP 12; STEP 13
* 4 (% SYSLIB *)
FLMALLOC IOTYPE=I,KEYREF=SINC
* STEP 15
* 5 (% SYSIN x%)
FLMALLOC IOTYPE=U,KEYREF=SINC, DDNAME=SYSPUNCH
* STEP 14
* 6 (% SYSPRINT =)
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=FBA,LRECL=133, C
RECNUM=25000, PRINT=Y,DFLTTYP=LIST
* STEP 24
* 7 (* SYSPUNCH =)
FLMALLOC IOTYPE=N
FLMCPYLB NULLFILE
* STEP 17
* 8 (% SYSUT1 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 18
* 9 (% SYSUT2 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 19
* 10 (% SYSUT3 %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 20
* 11 (% SYSUT4 %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 24
* 12 (% SYSTERM *)
FLMALLOC IOTYPE=N
FLMCPYLB NULLFILE
* STEP 21
* 13 (% SYSUT5 %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 22
* 14 (% SYSUT6 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
*STEP 23
* 15 (% SYSUT7 %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 5694-A01 COPYRIGHT IBM CORP 1980, 1989,2007

Figure 64. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 2 of 2)

Note: For reference purposes, the language definition shown in Figure 63 on page 123 contains
comments with step numbers placed in the middle of commands; for this language definition to run, these
comments must be removed.

124 7/0S: z/0OS ISPF SCLM Guide and Reference

Required environment

Chapter 6. Using SCLM and Tivoli Information
Management for z/0S

Tivoli Information Management sample code is provided as member FLMOOCVE in SAMPLIB. It illustrates
communication between SCLM and Tivoli Information Management. The sample is implemented in the
REXX language and uses the Information Management REXX high-level API. The sample verifies a
programmer's authority to update an SCLM-controlled module based on the SCLM change code provided
by the programmer.

FLMOOCVE retrieves the Information Management problem record identified by the change code, and
verifies:

1. The record exists.
2. The Problem Status field is set to OPEN.
3. The Assignee Name field is the same as the userid parameter passed by SCLM.

Required environment

« Tivoli Information Management for z/OS Version 1.2 or later must be installed on the target MVS system.
« The Information Management REXX HLAPI (BLGYRXM) must be installed on the system.

« Avalid Information Management session name, class name, and default REXX/HLAPI Record-Retrieve
PIDT table must exist. The sample uses session BLGSESOO, class MASTER, and table BLGYPRR.

- For software verification purposes, at least one problem record meeting the desired criteria should exist
in the Information Management database.

Description of user program interaction

The FLMOOCVE REXX Exec can be invoked as a regular MVS Exec, but it is designed to be invoked as an
SCLM change code verification user exit. If FLMOOCVE is invoked as a user exit, the Information
Management-specific arguments are passed by the SCLM option list defined in the FLMCNTRL macro. The
SCLM-specific arguments are appended to the Information Management arguments.

Input parameters

Two different sets of parameters are passed to the sample as one parameter string. User options are
specified in the Options entry of the FLMCNTRL macro. SCLM parameters are the standard set of
parameters passed to the SCLM Exit.

Option list format
The option list format is as follows:

pica_tabn,
pica_clsn,
pica_sess,
pica_clsc,
pica_dbid,
pica_msgd,
pica_spli,
pica_stxt,
pica_tint,
pica_uszn,
group,
type,
member,
language,
userid,

© Copyright IBM Corp. 1990, 2021 125

Input parameters

auth code,
change code

Information Management parameters

The required Information Management parameters are:

pica_tabn
Specifies the name of the Information Management Record Retrieval table. The table defines the
fields within a problem record. The default is BLGYPRR (shipped with Information Management). This
must be the name of the table used in your installation.

pica_clsn
Specifies the Information Management Privilege Class record that contains the registered user name
authorized to retrieve a problem record. The default is MASTER. This must match your installation.
The registered authorized user name (see pica_usrn) is optionally specified in option 10.

pica_sess
Specifies the name of the Information Management Session Member (BLGSESxx) load module. The
default is BLGSESOQO. This parameter must match your installation.

The optional Information Management parameters are:

pica_clsc
Specifies the count of privilege class records that can be maintained in storage during the Information
Management session. The default is one. The sample program uses only one privilege class record.

pica_dbid
Specifies the Problem Record database number. The default is 5, the standard Information
Management database.

pica_msgd
Specifies the destination for Information Management API log messages. Messages can be either
printed to an APIPRINT data set, returned on the message chain, or both. The default is C, return
messages on the API message chain. The sample program interprets chained message return code
and reason code values to provide English text messages. See “Error processing” on page 127 for
more information.

pica_spli
Specifies the number of minutes that the activity log can print transaction results before the API
closes and reopens the log. The default is ten minutes if message chaining (pica_msgd) is not
selected, otherwise, it is zero.

pica_stxt
Specifies whether text data is to be retrieved from the problem record. Setting this value to NO
suppresses text retrieval. The default is NO because the sample program does not process text fields
in the problem record.

pica_tint
Specifies the transaction processing timeout interval. This field specifies the time in seconds that any
Information Management API transaction can process before the API notifies the application of a
timeout event. The default is 300 seconds.

pica_usrn
Specifies a name registered in the selected Privilege Class (see pica_clsn) that is authorized to
retrieve problem records. The default is the TSO User ID of the SCLM user.

SCLM parameters
The SCLM parameters are:

group
Specifies the MVS data set Group name.

126 z/0S: z/0OS ISPF SCLM Guide and Reference

Program flow

type
Specifies the MVS data set Type name.

member
Specifies the MVS partitioned data set Member name if selected, otherwise blank.

language
Specifies the language of the module selected. This is blank for Edit exits.

userid
Specifies the TSO User ID accessing SCLM. In the sample program, this value is compared to the
Information Management Problem Record Assignee Name field (Information Management S-word:
SOB5A) for authorization to modify the SCLM modaule.

auth_code
Specifies the authorization code of the member being edited.

change code
Specifies the Change Code entered by the SCLM user on the appropriate panel. This value is used by
the sample program to specify the Information Management Problem Record Record_ID (RNID) to be
retrieved. In the sample program, the Problem Record Current Status field (Information Management
S-word: SOBEE) from the retrieved record is verified against the constant OPEN for authorization to
modify the SCLM module.

Program flow

When the FLMOOCVE program is invoked, the program flow is as follows:

1. Parse the argument string passed by invocation.

. Perform the REXX/HLAPI Initialization function (HLO1).

. Perform the REXX/HLAPI Record Retrieve function (HL06).
. Perform the REXX/HLAPI Termination function (HL02).

. Verify that the user requesting to change the member has authority to do so based on information
contained in the retrieved record.

o b W N

6. Output error messages if applicable.
7. Return to caller passing return code as exit value.

Each of the steps above performs error-checking and return code analysis independently. If an error is
noted, processing might terminate at that time or continue to another step. For example, after
Information Management initialization has completed, Information Management Termination is
attempted regardless of intervening errors; the transaction is not left hanging.

Error processing

When an error condition is encountered, the program issues an error message, if possible, and terminates
processing with the appropriate return code. When a warning condition is encountered, the program
issues a warning message and continues processing. When a warning or error is the result of an
Information Management REXX/HLAPI call, a message appropriate to the reason code is displayed. If an
Information Management message chain is available, the associated messages are also displayed.

The program initiates REXX/HLAPI with logging enabled. Error conditions are both printed to the session
log and returned to the program in message chains, as appropriate.

For warning message instigated by the Information Management API interface, the program returns a
return code of zero because SCLM considers any nonzero return code as an indication of failure. For API
errors with return code 8 or higher, the program issues the appropriate messages and return code 8.

The program specifically tests for and reports the following input parameter errors:

« No input parameters.
- Missing or invalid REXX/HLAPI table name.

Chapter 6. Using SCLM and Tivoli Information Management for z/OS 127

Example

 Missing or invalid Information Management Class name.
« Missing or invalid Information Management Session ID.

- Missing or invalid User ID.

 Missing or invalid Change Code.

« Problem Record not found in the database.

« Problem Record Problem Status not "OPEN".

« Problem Record Assignee Name does not match User ID.

« Input parameters specified as "Ignored" are checked for presence and valid format, and a warning
message is issued if warranted. However, the return code presented is zero.

Example

This example calls the FLMOOCVE Exec through the SCLM verify change code exit.

IN FLMCNTRL MACRO:
CCVFY=FLMOOCVE,
CCVFYDS=PR0J1.SAMPLIB.EXEC,
CCVFYCM=TSOLNK,
CCVFYOP=(BLGYPRR,MASTER, BLGSES00,1,5,C,300,N0, 360, FLMOOCVE,)

Where:
CCVFY=FLMOOCVE
Specifies that the SCLM Verify Change Code exit be used and that member FLMOOCVE be invoked.

CCVFYDS=PROJ1.SAMPLIB.EXEC
Specifies the MVS data set containing member FLMOOCVE. In the example:
"PROJ1.SAMPLIB.EXEC(FLMOOCVE)"

CCVFYCM=TSOLNK
Specifies that FLMOOCVE is invoked using the TSO service facility routine, the default for REXX Exec
programs.

CCVFYOP=(exit routine parameters)
Specifies the parameters that are passed to the exit program.

128 z/0S: z/OS ISPF SCLM Guide and Reference

The parsers as provided

Chapter 7. Understanding and using the customizable
parsers

Parsers are provided as source code (in REXX) for those customers who need to extend or modify the
behavior of the parsers supplied by IBM. This section explains the logic of the parsers as provided and
gives examples of how to modify the parsers to suit your own needs and standards.

The customizable parsers supplied by IBM are:
FLMLRASM
Assembler H parser

FLMLRCBL
COBOL II parser

FLMLRCIS
C/C++ for MVS parser

FLMLRC2
C++ for Windows parser

FLMLRC37
C/370 parser

FLMLRDTL
DTL parser

FLMLRIPF
0S/2 IPF parser

These parsers can be found in the ISPF sample library, ISP.SISPSAMP.

The parsers as provided

The IBM-supplied parsers are provided as REXX source. If you do not require any changes to the functions
provided, the source modules can be used. The parsers may also be compiled, pre-linked, and link-edited
(using the IBM Compiler and Library for REXX/370 and the Linkage Editor) for optimum performance.

Use the CALLMETH=TSOLNK parameter on the FLMTRNSL macro to directly invoke SCLM translators
written in REXX.

Sample language definitions

The sample language definitions are provided to demonstrate how to invoke the customizable parsers:
FLM@RASM

Assembler H sample language definition
FLM@RCBL

COBOL II sample language definition
FLM@RCIS

C/370 sample language definition
FLM@RC37

C/370 sample language definition
FLM@DTLC

DTL sample language definition

FLM@WBCC
C++ for Windows sample language definition

© Copyright IBM Corp. 1990, 2021 129

Modifying the parsers

FLM@WIPF
0S/2 Help sample language definition

In addition, a sample REXX language definition, FLM@REXC, is provided to compile, pre-link, and link-edit
REXX source code.

Parser error listings

For parsing errors with return codes of 4, 8, or 10, the parsers write error messages to a data set called
userid.SCLMERR.LISTING. An error message consists of two or three lines. The first line is the error code:
4, 8, or 10. The second line and the third line (if it exists) contain one of the following pieces of
information:

« One or more non-valid input parameters
« A dependency name that is greater than 8 characters in length
« A dependency name that cannot be stored in the dependency buffer because it is full

A line of source containing an error

A single quote or double quote that is mismatched and its line number

For more information about the return codes from the parsers, refer to Chapter 22, “SCLM translators,” on

page 563.

Modifying the parsers

This section describes the general design of the customizable parsers and provides several examples of
updating the parsers.

The parsers read each line of the source code and process tokens on each line. Tokens are discrete
elements on a line of source code; they are language-dependent. For example, consider the following
COBOL statement:

MOVE 'SMITH' TO NAME.

Seven tokens appear in this example: MOVE, the two single quotation marks, SMITH, TO, NAME, and the
period.

State variables are used to hold the current conditions and expectations created by the processing of
prior tokens in order to process the current token. For example, if a single quote is found, the single quote
state variable (state.single) is turned on. All tokens, regardless of multiple lines, are ignored until the
matching single quote is found, or until the end of file is reached. In the COBOL and Assembler parsers,
dependency names may be enclosed in quotes; all data after the dependency name is ignored until the
matching quote is found. Dependency keywords (COPY or EXEC SQL INCLUDE) inside quotes are
ignored. For example, consider the following COBOL statement:

MOVE 'COPY B' TO ACTION.

B will not be placed into the dependency buffer because COPY will not be processed as a dependency
keyword.

Because of these state variables, dependencies, comments (in C/370), quotes, and so on can span lines.
Concatenation of keywords and dependency names (particularly in COBOL) is not supported by the
parsers. If dependency names are split between lines, the partial dependency name will not be added by
the REXX parser.

Adding more elaborate parsing error messages

This section provides an example of modifying a customizable parser to add more complete error
messages to the userid. SCLMERR.LISTING data set. This support can be added to all of the customizable
parsers. The COBOL parser, FLMLRCBL, will be used in this example.

130 z/0S: z/OS ISPF SCLM Guide and Reference

Modifying the parsers

The error_listing routine is used to place the error_stringl and error_string?2 strings into the error
messages data set. error_stringl and error_string?2 are set before invoking error_listing. The
following list identifies, in order, the routine, the expanded English error message, and the error string to
be changed in FLMLRCBL.

Routine
Change Required
initialization
Change:

error_stringl = miss_parml
miss_parm2
miss_parm3

o
to

error_stringl = 'MISSING PARAMETER(S): ' ||,
miss_parml ' ' ||,
miss_parm2 ' ' ||,
miss_parm3

initialization
Change:

error_stringl = 'LISTSIZE=',
| |sclm_dep_array_size
error_string2 = ' LISTSIZE < ',
DEP_ELEM_SIZE

to

error_stringl = 'LISTSIZE PARAMETER MUST BE AT LEAST',
DEP_ELEM_SIZE
error_string2 = '

initialization
Change:

error_stringl = 'LISTSIZE=',
| |sclm_dep_array_size

to

error_stringl = 'LISTSIZE PARAMETER MUST BE A '||,
"POSITIVE WHOLE NUMBER'

initialization
Change:

error_stringl = 'LISTINFO=',
| |sclm_dep_addr

to

error_stringl = 'LISTINFO PARAMETER MUST BE A '|]|,
"POSITIVE WHOLE NUMBER'

initialization
Change:

error_stringl = 'STATINFO=',
| |sclm_stats_addr

to

error_stringl = 'STATINFO PARAMETER MUST BE A '||,
'"POSITIVE WHOLE NUMBER'

Chapter 7. Understanding and using the customizable parsers 131

Modifying the parsers

process_line
Change:

error_stringl
to

error_stringl

add_dep
Change:

error_stringl
to
error_stringl
termination
Change:
error_stringl
to
error_stringl

termination
Change:

error_stringl
to
error_stringl

termination
Change:

error_stringl
to

error_stringl
error_string2

token

'"DEPENDENCY 'token'
"CHARACTERS ON LINE
stats.total_lines

EXCEEDS 8 '||,
I

name

'DEPENDENCY ARRAY CAPACITY EXCEEDED '||,
‘WITH DEPENDENCY 'name

SINGLE_QUOTE state.single_line

"MISMATCHED SINGLE QUOTE ON ' state.single_line

DOUBLE_QUOTE state.double_line

"MISMATCHED DOUBLE QUOTE ON ' state.double_line

END_KEYWORD

'DEPENDENCY ARRAY CAPACITY EXCEEDED, '
‘NOT ENOUGH SPACE TO WRITE END-OF-LIST KEYWORD'

Appending to the error listing file

If parser errors are found, error messages are written to the userid. SCLMERR.LISTING data set. This data
set is created (re-written) each time an error is found, each time one of the REXX parsers is invoked. The
allocate_error_listing routine is used to allocate this data set. The overwriting of this data set is suitable
for creating or modifying members with Edit. However, during multiple migrations of members, this data
set will be overwritten each time a parser error occurs per parser invocation.

To keep all parser errors for all members, modify the allocate_error_listing routine to append to the

userid. SCLMERR.LISTING data set, instead of overwriting it. Change

IF SYSDSN(ERRFILE) =

disp = 'OLD'
ELSE

to

'OK' THEN

132 z/0S: z/OS ISPF SCLM Guide and Reference

Compiling the parsers

IF SYSDSN(ERRFILE) = 'OK' THEN
disp = 'MOD'
ELSE

With this change, all invocations of the parser will append any error messages to the error file without
overwriting the previous contents.

Compiling the parsers

To increase parser performance, any parsers written in REXX can be compiled and pre-linked using the
IBM Compiler and Library for REXX/370. Using the FLM@REXC language definition, SCLM can be used to
compile, pre-link, and link-edit the parsers. To compile a parser using FLM@REXC:

1. Add FLM@REXC to your SCLM project definition.

. Make any required changes to FLM@REXC, such as changing specified data set names.
. Re-assemble and re-link the project definition.

. Migrate the parsers into SCLM using the REXXCOM language.

. Build each of the parsers.

. If necessary, copy the load modules (FLMLRASM, FLMLRCBL, FLMLRC37, FLMLRCIS, FLMLRC?2,
FLMLRDTL, and/or FLMLRIPF) to common data sets.

7. Change the language definitions to use the load modules instead of the interpreted versions.
Remember to change the CALLMETH parameter on the FLMTRNSL macro.
8. Re-assemble and re-link the project definition.

o o0 WN

Chapter 7. Understanding and using the customizable parsers 133

Compiling the parsers

134 z/0S: z/OS ISPF SCLM Guide and Reference

Part 2. Developer's Guide

© Copyright IBM Corp. 1990, 2021 135

136 z/0S: z/OS ISPF SCLM Guide and Reference

SCLM project environment

Chapter 8. The Software Configuration and Library
Manager

The Software Configuration and Library Manager (SCLM) component of ISPF contains the capabilities of
both a Library Manager and a Configuration Manager program.

Library Manager programs control source code, keeping developers from accidentally overwriting each
other's code changes and providing a mechanism for moving the source code from one set of
development libraries to the next. Also, SCLM can keep back-level versions of source files, with an audit
trail of changes and other basic library management functions that you can use in your code development
and maintenance processes.

Configuration Manager programs track how all the pieces of an application fit together. Not just the source
code, but the object and load modules as well. SCLM adds additional capabilities, such as how test cases
and documentation are associated with a source code module. SCLM uses this information to control
compiling, linking, and promoting an application. SCLM "builds" are optimized such that only pieces that
need to be regenerated when a change is made are built.

SCLM project environment

The SCLM project environment is made up of data sets used by SCLM to store and control the user
application software for an individual project. The project environment contains three types of data
associated with an individual project:

» User Application Data
« SCLM Control Data (see “Step 6: Allocate and create the control data sets” on page 17)

« Project Definition Data (see Chapter 1, “Defining the project environment,” on page 3)

User application data

User application data consists of the application data (programs) being developed for a single project.
SCLM stores all user data associated with a single project as members within a hierarchical set of MVS
partitioned data sets (ISPF libraries). These data sets are called the project partitioned data sets. Users
refer to SCLM-controlled ISPF libraries with an SCLM naming convention containing three levels of
qualification, specifically:

project_name.group_name.type_name

The first qualifier, project_name, is the unique project identifier associated with the hierarchy.

SCLM organizes project data sets into groups, the second identifier within the naming convention. Each
group represents a different stage or state of the user data within the life cycle of a project. For example,
assume a project has three groups named DEV1, TEST, and RELEASE. The DEV1 group represents data
being modified. The TEST group represents data being tested. The RELEASE group represents data
released for customer use. The groups of a project are organized into hierarchical order to form a tree-like
hierarchy.

A group is made up of several data sets that can contain different types of data. Types, the third qualifier
of the naming convention, are used to differentiate the kinds of data maintained in the groups of a project.
For example, source code would be stored in one type and listings in another type. It is better not to mix
different data types in SCLM. (Although SCLM allows you to do this, it is not recommended; data with
different formats should be stored in different types.)

© Copyright IBM Corp. 1990, 2021 137

SCLM project environment

Thus a user working on an application for project PROJ1 might be assigned to the DEV1 group. The project
can be using four different types of data. Therefore the user might have the following project partitioned
data sets to work in:

PROJ1.DEV1.SOURCE
PROJ1.DEV1.0BJECT
PROJ1.DEV1.LISTING
PROJ1.DEV1.LOAD

all source modules

all compiler object files

all compiler listings

all executables (link-edit output)

Note: SCLM can use data sets with names consisting of three levels of qualification as is the practice in
many ISPF environments. It can also use data sets with two or more levels of qualification. This is an
option that the project manager must enable for a project to use. If this option is used, SCLM developers
would still use the project_name.group_name.type_name naming convention when performing
SCLM functions. See “Flexible naming of project partitioned data sets” on page 12 for more information
about this option.

SCLM hierarchies

The groups within a project are organized in a hierarchical order with each group being subordinate to the
group above it. A sample hierarchy is shown in Figure 65 on page 138.

RELEASE

TEST

DEWV1 ‘ DEVZ2 ‘

Figure 65. Sample Project Hierarchy

The topmost group is not subordinate to any group and is known as the top group, root group, or the root
of the hierarchy. There is only one top group in each hierarchy. The bottom groups in a hierarchy are called
development groups. The names for the development groups in Figure 65 on page 138 are DEV1 and
DEV2. All modifications and additions to user-created data must occur in the development groups of the
hierarchy. Groups of equivalent rank within the hierarchy are considered to be within the same layer of the
hierarchy. Most hierarchies have multiple layers.

Changes can be promoted to the next group, TEST, in the example hierarchy. Promote means to copy or
move a member or a set of members from one group to the next group in the hierarchy. Each group can
only promote members to the group to which it is subordinate. This link between groups is known as the
promote path. or example in Figure 65 on page 138 the three promote paths are DEV1 to TEST, DEV2 to
TEST, and TEST to RELEASE. Any number of groups can promote into the same group.

Hierarchies are always searched from bottom to top along a path called the hierarchical view. The
hierarchical view can begin at any group in the hierarchy and follows the promote paths to the topmost
group in the hierarchy. Therefore in Figure 65 on page 138, two examples of hierarchical views are DEV1
to TEST to RELEASE and TEST to RELEASE. Thus, when referencing data in the hierarchy, members at
lower groups take precedence over members at higher groups. All data existing in groups TEST and
RELEASE is accessible from development libraries in groups DEV1 or DEV2. When a change is made to a
member in the DEV1 group, this change is not available to the DEV2 group until the changed member has
been promoted to the TEST group.

Therefore, within a hierarchy, the user data located at the lower layers of the hierarchy is in a more
volatile state than the data at the upper layers. The upper layers of the hierarchy usually contain versions
of products ready or nearly ready for release to customers, while the lower layers contain versions of
products currently under development.

138 z/0S: z/OS ISPF SCLM Guide and Reference

SCLM project environment

Key/non-key groups

You can further identify groups in the project hierarchy as key groups and non-key groups. Key groups are
defined as the groups within a hierarchy that contain all the software components of the application under
development. A key group is a group into which you move data during a promotion. A project can have as
many key groups as you want as long as any hierarchical view has no more than 123 groups. The actual
limiting factor is the MVS limit of 123 extents for a concatenated partitioned data set.

SCLM allows a project to specify transition groups between key groups. These groups are known as non-
key groups. A non-key group is a group into which you copy (rather than move) data during a promotion.
When you promote data in a hierarchy, SCLM does not purge data from a key group until it reaches the
next key group. Therefore, in a project with non-key groups, SCLM temporarily duplicates data in the non-
key groups and the next lower key group. Figure 66 on page 139 illustrates the relationship between a key
and a non-key group within a project hierarchy.

| RELEASE

TEST

non-key groups —e STAGE1 STAGEZ

DEWVT DEVZ2

Figure 66. Key and Non-Key Groups Within the Project Hierarchy

As the figure shows, two non-key groups (the STAGE layer) appear between the development groups (the
DEV layer) and the test and integration group (the TEST layer.) Developers use the STAGE groups as an
interim place into which they promote their work before it moves to the next layer.

Using non-key groups enables you to display the critical elements of the hierarchical structure on ISPF
panels. Because ISPF panels allow you to display only four key groups at one time, it is difficult to display
the highest group in the hierarchy when you have a complex project that contains many layers.

Select key groups and non-key groups with the following set of guidelines:

« The lowest (development) groups must be key.
= Any group with more than one lower group promoting into it should be key.

Moving data through the hierarchy

Data moves within an SCLM hierarchy in two directions, up or down. When SCLM promotes members up
the hierarchy from one group to the next group, the following rules apply:

« Copy members from key groups to non-key groups

« Move members from non-key groups to non-key groups

« Move members from key groups to key groups

« Move members from non-key groups to key groups and purge from the previous key group.
« Do not promote data from a primary non-key group.

In general, when SCLM accesses a hierarchy from a particular group, it concatenates only the necessary
groups. If the lowest group in the hierarchy to be accessed is non-key, SCLM concatenates it with all the
non-key groups above it, up to the next key group. From there, SCLM concatenates only the key groups. If
the starting group in the hierarchy to be accessed is key, SCLM concatenates only it and the key groups
above it.

Chapter 8. The Software Configuration and Library Manager 139

SCLM project environment

The one exception to this concatenation involves non-key groups that have more than one group
promoting into them. Non-key groups of this kind are as significant as key groups, and SCLM must also
concatenate them in a hierarchy. Groups that must be concatenated when a hierarchy is to be accessed
are known as primary groups. Thus, all key groups and all non-key groups with more than one group
promoting into them are primary groups.

After members are promoted from the development groups to the higher groups in the hierarchy, users
can bring members back to the development groups by performing a draw down. A draw down copies the
member at the higher group to the specified development group. For a member to be drawn down it must
be within the hierarchical view of the development group. Members can only be drawn down to
development groups. SCLM performs an automatic draw down when the member is edited.

140 z/0S: z/OS ISPF SCLM Guide and Reference

Name retrieval with the NRETRIEV command

Chapter 9. Using SCLM functions

With SCLM functions, you can view, create, update, delete, compile, link, promote, and report on data
stored in the database of a project. In addition, you can generate reports with the build, promote, and
utilities functions.

This chapter describes the panels and options you use to access SCLM functions and to generate reports.
It also compares SCLM to ISPF and notes the differences in the EDIT environment under both utilities.

You can access all interactive SCLM functions through a set of panels by selecting the SCLM option from
the ISPF Primary Option Menu. In addition to the SCLM panel interface, you can call a subset of SCLM
functions independently with a command line processor or a program service interface. See Chapter 18,
“Invoking the SCLM services,” on page 355 for more information.

Note:

1. If SCLM does not appear on any of your menu panels or on the Menu pull-down, enter TSO SCLM on
any ISPF command line. If SCLM is available to your terminal session, the SCLM Main Menu is
displayed.

2. Avirtual region size of 4096K is recommended when you use the SCLM dialog. Increase the virtual
region size if you encounter abends related to insufficient memory.

3. SCLM maintains allocations of data sets in the hierarchy between uses of SCLM functions. This
enhances the performance of SCLM; however, if data sets in the hierarchy are created, deleted,
cataloged or uncataloged while SCLM is active, you should exit SCLM and reopen the SCLM Main Menu.

Name retrieval with the NRETRIEV command

The ISPF command table contains an entry named NRETRIEV. On enabled panels such as Edit, NRETRIEV
retrieves the library names from the current library referral list, or data set name, z/OS UNIX file name, or
workstation file name from the current data set referral list. The user is responsible for assigning the
NRETRIEV command to a PF key.

When the cursor is not in the Other Data Set Name field, the Volume Serial field, or the Workstation File
Name field, and the NRETRIEV key is pressed, the ISPF library fields are filled in from the current list. As
long as the cursor is not placed in these fields, subsequent presses of the NRETRIEV key will retrieve the
next library concatenation from the list.

When the cursor is in the Other Data Set Name field, the Volume Serial field, or the Workstation File Name
field, and the NRETRIEV key is pressed, the data set name, z/OS UNIX file name, or workstation name is
filled in from the current data set list. ISPF attempts to determine if the name in the list is a workstation
z/OS UNIX file name, or data set name. As long as the cursor is placed in these fields, subsequent presses
of the NRETRIEV key will retrieve the next data set name, z/OS UNIX file name, or workstation name from
the list.

Use the personal list settings panel to force the NRETRIEV command to verify the existence of a data set
before retrieving it. If verification is active, then a check is made to see if a data set name exists before a
retrieval attempt. If a volume name is not in the personal list entry, then the catalog is checked to see if
the data set name is cataloged. If a volume name exists, an OBTAIN macro is used to check the volume
for the data set. Verification does not check ISPF library names, z/OS UNIX file names, or workstation
names, and does not check for the existence of PDSE members. In the data set list Dsname Level field,
verification is inactive and workstation names are never retrieved.

NRETRIEV is enabled on the following options:

« View, including extended move, copy, create, and replace panels
« Edit, including extended move, copy, create, and replace panels
« Library Utility (Option 3.1)

© Copyright IBM Corp. 1990, 2021 141

Name retrieval with the NRETRIEV command

« Data Set Utility (Option 3.2)
- Move/Copy Utility (Option 3.3)
« Data Set List (Option 3.4)
» Reset ISPF Statistics (Option 3.5)
« Hardcopy Utility (Option 3.6)
« Workstation Transfer (Option 3.7.2)
« SuperC (Options 3.12 and 3.14)
« ISPF Table Utility (Option 3.16)
« z/OS UNIX Directory List Utility (Option 3.17)
« SCLM Options:
— View (Option 1)
— Edit (Option 2)
— Member list (Option 3.1)
— Migration (Option 3.3)
— Unit of Work (Option 3.11)
— Build (Option 4)
— Promote (Option 5)
— Easy Cmds (Option 6A)

SCLM considerations for NRETRIEV

The NRETRIEV command is enabled to work in several of the SCLM options. There are certain restrictions
and considerations to keep in mind when you choose to use NRETRIEV in SCLM.

SCLM restrictions

« The NRETRIEV key within SCLM does not use the standard reference list or personal lists. Instead, it
uses a stack that is stored internally. The stack is not editable. The stack is saved from session to
session as a single-line table called ISRSLIST.

Note: In the SCLM View option, the Other Data Set Name field does use the standard reference list
because the Other Data Set Name field has no particular meaning to SCLM.

« In SCLM, there is no validation of saved or retrieved names. That means that if you type in a library
name and press Enter, it is added to the list of saved names, even if SCLM does not process it. This
contrasts with the standard reference list processing, which does not add a data set or library name
until the data set or library is successfully allocated.

« On name retrieval (when the NRETRIEV key is pressed) there is no validation of the existence of data
sets or libraries.

« The regular NRETRIEV command is screen independent (it uses a separate list indicator for each screen
in split screen mode). There is only 1 position locator for SCLM lists. This means that split screens with
SCLM NRETRIEV will use the same pointer into the list. An NRETRIEV on screen 1 followed by an
NRETRIEV on screen 2 will get list entries 1 and 2 respectively.

Stack management for SCLM

A library name (or concatenation) is added to the list of saved library names by pressing Enter on a panel
that supports saving names. If the library or concatenation exists in the list already, it is moved to the top
of the list. Where the Project field or the first Group field is an output field (SCLM options 2, 3, 4, and 5),
the output fields are not used in the comparison between what was typed on the panel and what is
already in the list. This enables you to work in different but similar projects.

142 z/0S: z/OS ISPF SCLM Guide and Reference

SCLM main menu

In other words, on the edit screen that has both the Project and Groupl as output fields, the
concatenation:

SCLM Library:

Project...: PDFTDEV

Group: DGNSTG ... INT ... SVT
Type: ARCHDEF

Member ...:

would match:

SCLM Library:

Project...: PDFT0S25

Group: JSMSTG ... INT ... W.SVT
Type: ARCHDEF

Member ...:

Similarly, where groups 2, 3, and 4 are not used, those groups are not used when checking to see if the
name already exists.

If a match is found, the existing entry in the list is moved to the top of the list.

SCLM main menu
Figure 67 on page 143 shows the primary options on the SCLM Main Menu.

Menu Utilities Help

SCLM Main Menu

Enter one of the following options:

1 View ISPF View or Browse data
2 Edit Create or change source data in SCLM databases
3 Utilities Perform SCLM database utility/reporting functions
4 Build Construct SCLM-controlled components
5 Promote Move components into SCLM hierarchy
6 Command Enter TSO or SCLM commands
6A Easy Cmds Easy SCLM commands via prompts
7 Sample Create or delete sample SCLM project
A SCLM Admin Maintaining SCLM administrators
X Exit Terminate SCLM

SCLM Project Control Information:
Project PDFTDEV (Project high-level qualifier)
Alternate . . . (Project definition: defaults to project)
Group MBURNS (Defaults to TSO prefix)

Option ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 67. SCLM Main Menu Panel (FLMDMN)

SCLM main menu options

When you select one of these options and press Enter, another panel appears that is determined by the
option you selected.

View

See “View (option 1)” on page 144.
Edit

See “Edit (option 2)” on page 147.
Utilities

See “Utilities (option 3)” on page 154.

Build
See “Build (option 4)” on page 235.

Chapter 9. Using SCLM functions 143

View (option 1)

Promote
See “Promote (option 5)” on page 243.

Command
Enter and execute a TSO, CLIST, REXX exec, or SCLM command from within SCLM.
Easy Cmds
Select an FLMCMD service to display a panel containing data entry fields for the parameters
associated with that service. For details about the specific service panels, see the description of the
relevant service in Chapter 19, “SCLM services,” on page 375.
Sample
See “Sample Project Utility (option 7)” on page 252.
SCLM Admin
See “Maintaining SCLM administrators (option A)” on page 253.
Exit
Exit from SCLM.

SCLM main menu action bar choices
Menu
See the topic about action bars in z/0S ISPF User's Guide Vol I.
Utilities
See the topic about action bars in z/0S ISPF User's Guide Vol I.

Help
Help for general and specific topics.

SCLM main menu panel fields

Project
A project's unique identifier. This field is required to access any SCLM function.
Alternate
The name of an alternate project definition to use. If this field is left blank, it defaults to the value
specified in the Project field.
Group
This group defines the bottom of the hierarchical view used by the selected function, and can be any

group in the hierarchy. This field defaults to your TSO PREFIX or to your user ID if no TSO PREFIX has
been created. This field must be a development group if Edit (2) is chosen.

View (option 1)

The SCLM View function uses the ISPF View service with an SCLM shell around it. The View function
allows you to display data in a project hierarchy or data that is not controlled by SCLM. The SCLM View
interface analyzes the hierarchy structure for the project you specify and automatically provides the
appropriate concatenation sequence for the groups. It presents the four lowest key groups identified in
the project definition, starting from the Group specified on the Main Menu.

SCLM View is functionally equivalent to ISPF View. (See z/0S ISPF User's Guide Vol II for more
information.) For example, you can specify a member name unless you want to see a member selection
list. Additionally, you can modify the displayed library (or "group") concatenation sequence. You can also
view a partitioned data set (PDS), a partitioned data set extended (PDSE), or a sequential data set. Figure

68 on page 145 shows the panel SCLM displays when you select option 1, View, from the SCLM Main
Menu.

144 z/0S: z/OS ISPF SCLM Guide and Reference

View (option 1)

Menu Reflist RefMode SCLM Utilities Workstation Help

SCLM View - Entry Panel
SCLM Library:

Project . . . PDFTDEV

Group MBURNS . . . STG . . . INT .. . SVT

Type SOURCE

Member . . . (Blank or pattern for member selection list)

Other Partitioned, Sequential or VSAM Data Set:
Data Set Name

Volume Serial . . (If not cataloged)
Initial Macro Options

Profile Name _ Confirm Cancel/Move/Replace
Format Name _ Browse Mode

_ View on Workstation

/ Warn on First Data Change

Mixed Mode
Data Set Password . . (If password protected)
Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 68. SCLM View - Entry Panel (FLMEB#P)

Note: The NRETRIEV command key is enabled to work with this option. See “Name retrieval with the
NRETRIEV command” on page 141 for more information.

SCLM View - Entry Panel action bar choices

The action bar displays the same choices as those discussed in “SCLM main menu action bar choices” on
page 144. Additional choices are:

Reflist

The Reflist pull-down menu has the following choices:

Reference Data Set List
Displays a list of up to fifteen data set names that have been entered in the "Other" Data Set Name
field and other fields in ISPF that take a data set name as input.

Reference Library List

Displays a list of the last eight ISPF libraries that you have referenced.
Personal Data Set List

Displays a list of up to thirty data set names that you have created and saved.

Personal Data Set List Open...
Displays the Open dialog for all Personal Data Set Lists.

Personal Library List
Displays a list of up to eight ISPF Library specifications that you maintain.

Personal Library List Open...
Displays the Open dialog for all Personal Library Lists.

Refmode

The Refmode pull-down menu has the following choices:

List Retrieve
Sets referral lists, personal data set lists, and personal library lists into a retrieve mode. When you
select an entry from the list, the information is placed into the Dsname Level field, but the Enter key is
not simulated. You can then set other options before pressing the Enter key. (If this is the current
setting, this choice is unavailable.)

Chapter 9. Using SCLM functions 145

View (option 1)

List Execute
Sets referral lists, personal data set lists, and personal library lists into a retrieve mode. When you
select an entry from the list, the information is placed into the Dsname Level field, and the Enter key is
simulated. (If this is the current setting, this choice is unavailable.)

SCLM

The SCLM pull-down menu has the following choices:

Library
Displays the SCLM Library utility panel.

Sublib

Displays the SCLM Sublibrary Management Utility panel.
Migration

Displays the SCLM Migration Utility Entry panel.

DB Contents
Displays the SCLM Database Contents panel.

Architecture
Displays the SCLM Architecture Report panel.

Export
Displays the SCLM Export Utility panel.

Import
Displays the SCLM Import Utility panel.

Audit/Version
Displays the SCLM Audit and Version Utility panel.

Delete from Group
Displays the SCLM Delete from Group Utility panel.

Build
Displays the SCLM Build panel.

Promote
Displays the SCLM Promote panel.

SCLM View - Entry Panel fields

Project
The project that you specified on the SCLM Main Menu. An Alternate field also appears if you specified
an alternate project definition. If you change this field, all groups in the concatenation sequence are
treated as data that SCLM does not control.

Group
SCLM uses the group specified in the Group field on the SCLM Main Menu to determine the four key or
primary groups in the hierarchy that initially appear on the panel. You can enter both SCLM-controlled
groups and non-SCLM-controlled groups in the concatenation sequence at the same time.

If you specify a group that is defined in the project definition but not allocated, and you then request a
member list, the library (LIB) members on the member list panel might not be what is expected. SCLM
treats an unallocated group as if the group field were blank and ignores that group. When this
situation exists, SCLM provides a panel that shows how the LIB numbers correspond to the existing
groups.

Type
The identifier for the type of information in the group, such as SOURCE, ARCHDEF, or PANELS. If you
change this field to a value that is not defined to the project definition, all the groups in the
concatenation sequence are treated as data that SCLM does not control.

146 z/0S: z/0OS ISPF SCLM Guide and Reference

Edit (option 2)

Member
The name of a member in an SCLM-controlled or non-SCLM-controlled partitioned data set. If you
leave this field blank or type a pattern, a member list is displayed.

Data Set Name
Any fully qualified data set name, such as 'USERID.SYS1.MACLIB'. If you include your TSO user prefix
(defaults to user ID), you must enclose the data set name in single quotation marks. If you omit the
TSO user prefix, your TSO user prefix is added to the beginning of the data set name.

Volume Serial
A DASD volume identifier. ISPF does not allow a data set to be stored on more than one volume. SCLM
does not use the system catalog when you specify a volume serial.

Initial Macro
An Edit macro to be processed before you begin viewing your sequential data set or any member of a
partitioned data set. This initial macro allows you to set up a particular environment for the View
session you are beginning. If you leave the Initial Macro field blank and your Edit profile includes an
initial macro specification, the initial macro from your Edit profile is processed. To suppress the
processing of an initial macro in your Edit profile, enter NONE in the Initial Macro field.

Profile Name
A profile name to override the default Edit profile.

Format Name
The name of a format definition or blank if no format is used. A format definition can include EBCDIC
fields, DBCS fields, and a Mixed field. If the specified format includes a Mixed field definition and you
specify NO in the Mixed Mode field, SCLM ignores the operation mode.

Confirm Cancel/ Move/Replace
Specifies that you want ISPF to display a confirmation panel whenever you issue a Cancel, Move, or
Replace command.

Browse Mode
Specifies that you want to Browse the data set using the Browse function. This function is useful for
large data sets and data sets that are formatted RECFM=U.

View on Workstation
Select this option to view the host data set member on the workstation using the workstation tool
configured in the ISPF tool integrator. For more information, see the section on Workstation Tool
Integration in the Settings (Option 0) chapter of the z/0S ISPF User's Guide Vol II. Do not select this
option if you want to view the host data set member on the host using SCLM VIEW.

Warn on First Data Change
Specifies that you want ISPF to warn you that changes cannot be saved in View. The warning is
displayed when the first data change is attempted.

Mixed Mode
You can browse unformatted mixed data that contains both EBCDIC (1-byte) characters and Double
Byte Character Set (DBCS or 2-byte) characters. To do this, select mixed mode by entering a slash (/)
next to the Mixed Mode field. If your terminal does not support DBCS, SCLM View ignores the Mixed
Mode field.

Data Set Password
The password for OS password-protected data sets. This is not your TSO user ID password.

Edit (option 2)

The edit function is an interface to the ISPF editor. The SCLM editor ensures that editing occurs only in
development groups. SCLM automatically locks the member when you begin the edit session.

The SCLM editor is the ISPF editor with an SCLM shell around it. If the member has changed when you
end the edit session or if an explicit SAVE operation is performed, SCLM stores and parses the edited
member and stores its accounting record. You can only edit members that are stored in data sets under
the control of SCLM.

Chapter 9. Using SCLM functions 147

Edit (option 2)

When you select the Edit option, the SCLM editor analyzes the hierarchy structure for the specified project
and displays the sequence of the groups in your library concatenation. SCLM presents the four lowest key
or primary groups for the project previously specified in the project definition. The SCLM lock feature,
together with the ISPF "draw down" feature, ensures that the member you want to modify is the most
current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your development library in the
development group from its first appearance in a higher key or primary group in the library concatenation.
The member or compilation unit remains locked until you delete it or promote it to a higher group.

SCLM Edit also supports editing host data sets on the workstation. SCLM Edit will draw down the member
if necessary, lock it, and copy it into working storage. The data set name is converted to a workstation file
name and that name is appended to the workstation's current working directory. The host data set is
transferred to the workstation, and the working file is then passed to the user's chosen edit program.
When the user finishes the edit session, the working file is transferred back to the host and stored in the
SCLM development group. Accounting information is then saved for the member. The user will be
prompted for a language if the member is new or does not have a language. For more information, see the
section on Workstation Tool Integration in the Settings (Option 0) chapter of the z/0S ISPF User's Guide
Vol II.

Figure 69 on page 148 shows the panel SCLM displays when you select Option 2, Edit, from the SCLM
Main Menu.

Menu Reflist RefMode SCLM Utilities Workstation Help

SCLM Edit - Entry Panel

SCLM Library:
Project . . : PDFTDEV
Group MBURNS . . . STG . . . INT .. . SVT
Type SOURCE
Member . . . (Blank or pattern for member selection list)

Initial Macro
Profile Name . . . (If blank, defaults to data set type)

Options

_ Confirm Cancel/Move/Replace
_ Mixed Mode

_ Edit on Workstation

_ Preserve VB record length

Change code

Authorization code . . (If blank, the default auth code is used)
Parser Volume (If blank, the default volume is used)
Command ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 69. SCLM Edit - Entry Panel (FLMED#P)

Note: The NRETRIEV command key is enabled to work with this option. See “Name retrieval with the
NRETRIEV command” on page 141 for more information.

SCLM Edit - Entry Panel fields

Project
The project that you specified on the SCLM Main Menu. An Alternate field also appears if you specified
an alternate project.

Group
The development group that you specified in the Group field on the SCLM Main Menu. This group is
followed by the next key group in the hierarchy up to four groups.

The SCLM editor ensures that editing occurs only in development groups by not allowing you to
change the value of the first group field. SCLM guarantees that the group is a valid development library
by verifying it against the specified project definition. (All other displayed groups are in unprotected
fields and you can alter them.)

148 z/0S: z/OS ISPF SCLM Guide and Reference

Edit (option 2)

If the order of the groups is specified so that it does not match the hierarchical view for the
development group, SCLM does not allow the edit session and displays the message "Invalid library
order". If F1 is pressed twice, SCLM displays a panel showing all groups that comprise the hierarchical
view of the development group.

If you specify a group that is defined in the project definition but not allocated, and then request a
member list, the library (LIB) numbers on the member list panel might not be what is expected. SCLM
treats an unallocated group as if the group field were blank and ignores that group. When this
situation exists, SCLM provides a panel that shows how the LIB numbers correspond to the existing
groups.

Type
The identifier for the type of information in the SCLM group, such as SOURCE, ARCHDEF, or PANELS.
Member
The name of an SCLM-controlled or non-SCLM-controlled partitioned data set member. Leaving this
field blank or typing a pattern as a member name causes SCLM to display a member list.

Initial Macro
An edit macro to be processed before you begin editing. This initial macro overrides any IMACRO
value in your profile.

If you leave the Initial Macro field blank and your edit profile includes an IMACRO specification, the
initial macro from your edit profile is processed.

If you want to suppress the processing of an initial macro in your edit profile, enter NONE in the Initial
Macro field. See z/0S ISPF Edit and Edit Macros for more information.

Profile Name
The name of an edit profile that you can use to override the default edit profile. See z/0S ISPF Edit and
Edit Macros for more information.

Confirm Cancel/ Move/Replace
Allows you to specify whether a confirmation panel will appear for these options.

Mixed Mode
You can edit unformatted mixed data that contains both EBCDIC (1-byte) characters and Double Byte
Character Set (DBCS or 2-byte) characters. To do this, you must specify Mixed Mode. When you select
Mixed Mode, the editor looks for shift-out and shift-in delimiters surrounding DBCS data. If you do not
select it, the editor does not accept mixed data. If your terminal does not support DBCS, SCLM Edit
ignores the operation mode.

Edit on Workstation
Select this option to edit the host data set member on the workstation using the workstation editor
configured in the ISPF tool integrator. For more information, see the section on Workstation Tool
Integration in the Settings (Option 0) chapter of the z/0S ISPF User's Guide Vol II. Do not select this
option if you want to edit the host data set member on the host using SCLM EDIT.

Preserve VB record length
When you select this field with a "/", it specifies that the editor store the original length of each record
in variable-length data sets and when a record is saved, the original record length is used as the
minimum length for the record. The minimum length can be changed using the SAVE_LENGTH edit
macro command. The editor always includes a blank at the end of a line if the length of the record is
zero or eight.

Change Code
Optionally, you can specify a change code to indicate why you updated the member. Change codes
cannot contain commas.

Authorization Code
Optionally, you can specify a current authorization code for the member. If you do not specify an
authorization code, the default authorization code is used for the member. Authorization codes cannot
contain commas.

Parser Volume
The specific volume ID in which SCLM stores output from the SCLM parser. This field is not required.

Chapter 9. Using SCLM functions 149

Edit (option 2)

Comparison of SCLM and ISPF editors

The SCLM edit function provides an interface to the ISPF editor. For example, you can specify a profile
name and an initial macro before editing a member. With the SCLM editor, you can lock or parse a
member, create or update an accounting record, and specify change or authorization codes. Recursive
editing is only allowed within the data set concatenation currently being edited. Therefore, the member
name to edit must be supplied as part of the edit command (see “EDIT command” on page 150).

The parser supplied with SCLM does not recognize ISPF packed data. If the ISPF pack mode is on, the
parser supplied with SCLM returns statistical values reflecting packed data. You must unpack the data
before it is parsed by SCLM to obtain correct statistical values.

When editing parts controlled by SCLM, it is important to use the SCLM editor. The ISPF editor has a
configuration table that supports three levels of awareness of SCLM-controlled parts if trying to edit
SCLM-controlled parts with the ISPF editor (outside of SCLM):

No awareness
ISPF edit allows SCLM members to be edited, with no warning or message.

Warning Mode
ISPF edit displays an SCLM WARNING message when editing an SCLM-controlled member. However,
the ISPF edit will continue.

Fail Mode
ISPF edit does not allow the edit to start on an SCLM-controlled member.

If the ISPF editor is operating in Fail Mode, edit recovery operates in Warning Mode for purposes of
the recovery; you will be able to recover the member, and the SCLM WARNING message appears.

ISPF uses two checks to determine if a member is SCLM-controlled:

« The SCLM flag for the member is on (this is set by SCLM SAVE)

« Aproject.PROJDEFS.LOAD data set exists, where the high-level qualifier of the data set being edited
is equal to project.

When the configuration table has Fail Mode set, only the first condition (a directory entry indicating the
member was last edited by SCLM) results in the edit request being denied. If the member is not SCLM
controlled by the first condition, the second condition is applied and can result in a warning message.

SCLM command macros

The following sections describe the command macros available for use with the SCLM editor.

EDIT command

The SCLM EDIT command allows a user to recursively edit a member within the same hierarchy
concatenation of an SCLM supported type. That is, as long as the member exists within the groups and
type specified in the Group and Type fields on the SCLM Edit - Entry panel, recursive editing is allowed.

»— EDIT — member-name -»«

SAVE command

The SCLM SAVE command is similar to the ISPF Save command except that the member is automatically
parsed and the accounting record of the member is created or updated.

The first time you save a member that has not been created using the SCLM editor (or migrated into
SCLM), SCLM displays the SCLM Edit Profile panel (see Figure 70 on page 153) for you to specify a change
code and the language of the member. The profile appears if SCLM has not been informed of the language
of the member. The member is saved regardless of the parser return code on the first save.

»— SAVE >«

150 z/0S: z/OS ISPF SCLM Guide and Reference

Edit (option 2)

SCOMPARE command

The SCLM SCOMPARE command is similar to the ISPF Edit COMPARE command, except SCLM decodes
the data set and member (see Chapter 16, “Member encoding and decoding,” on page 329), if required,
prior to it being compared. The SCLM SCOMPARE command also searches the entire SCLM hierarchy to
determine the data set and member to be used instead of just searching the four groups allocated and
specified on the edit entry panel.

To enable the data set and member to be compared and decoded (if required), SCLM needs to determine
the fully-qualified data set name prior to invoking the ISPF edit COMPARE command to perform the
compare. If the data set and member is encoded, SCLM decodes the data set and member into a
temporary data set. This temporary data set is then passed to the ISPF Edit COMPARE command to
perform the compare.

SCOMPARE data-set L J 2
SCOMP —J \— data-set — (member-name) — EXCLUDE — label

member-name @ —

SESSION —

~ NEXT 7

The data set parameter is be checked to see if the data set exists. This data set is used to perform the
compare against the member being edited.

If only the member-name has been specified, SCLM searches the accounting records for the first
occurrence of the member-name in the hierarchy starting at the current development group. The group
where the member was found and current type are used to generate the data set name and member to be
compared.

If the SESSION parameter has been specified, SCLM searches the accounting records for the first
occurrence of the member currently being edited, starting at the current development group. The group
where the member was found and current type are used to generate a data set name and member to be
compared.

If the NEXT parameter has been specified, SCLM searches the accounting records for the first occurrence
of the member currently being edited starting at the group above the current development group. The
group where the member was found and current type are used to generate a data set name and member
to be compared.

If the EXCLUDE parameter has been specified, the matching lines are excluded so that you only view the
changes. EXCLUDE may also show a number of lines above and below the changes allowing you to see the
context of the change.

SCOPY command

The SCLM SCOPY command is similar to the ISPF command except that the SCLM editor allows the
copying of encoded SCLM members. The SCLM SCOPY command does not offer an extended panel for
moving a member from outside the hierarchy.

»w— SCOPY — member-name »<
BEFORE — label

The AFTER label parameter indicates the line after which to place the member that is being copied. To
create an AFTER label, enter an "A" or "a" in the Line Command field (usually represented by a column of
six-digit numbers on the far left side of your display) for the line you want. The BEFORE label parameter
indicates the line before which to place the member that is being copied.

Chapter 9. Using SCLM functions 151

Edit (option 2)

SCREATE command

The SCLM SCREATE command is similar to the ISPF Edit CREATE command except that the SCLM editor
automatically creates an accounting record for the created member, locks it out, and parses it.

If you do not enter a change code on the SCLM Edit - Entry panel (when one is required), SCLM displays
the SCLM Edit Profile panel shown in Figure 70 on page 153. Also, if the language of the member you want
to create differs from the language of the member you are editing, enter the SPROF command on the Edit
- Entry panel. The SCLM Edit Profile panel appears so that you can specify another language. Otherwise,
the newly created member has the same member attributes as the current member.

Note:

1. If the member to be created already exists in your group, SCLM returns a message indicating that the
member already exists. Thus you can avoid inadvertently overwriting members.

2. If the member to be created has a language that specifies ENCODE=Y, when saving, SCLM encodes the
new member. For more information, see Chapter 16, “Member encoding and decoding,” on page 329.

The SCLM SCREATE command does not offer an extended panel for creating a member outside the
hierarchy.

SCREATE member-name
»tSCRE j_ Elabell 3
label2
The label parameters indicate the lines from which the new member is created. For example, assume that
member OLD has been previously defined to SCLM. The COBOL programming language is associated with
member OLD. If you are editing member OLD, place "copy block" (CC) commands in the Line Command

field (usually represented by a six-digit number on the far left side of your edit screen) of lines two and
five of member OLD, and then issue this command from the command line.

SCREATE NEW

Member NEW will be added to the data set containing member OLD. Furthermore, member NEW will
contain lines two through five of member OLD and will also inherit member OLD's association with
COBOL. In this case, the block copy commands are the first and second labels passed with the SCREATE
command.

SMOVE command

The SCLM SMOVE command is similar to the ISPF MOVE command except the SCLM editor deletes the

accounting and build map information of the member being moved if it exists in the development group
from which the SMOVE was issued. The SMOVE command also allows encoded members to be moved.

For more information, see Chapter 16, “Member encoding and decoding,” on page 329.

The SCLM SMOVE command does not offer an extended panel for replacing a member outside the
hierarchy.

Note: Once a member is successfully moved, the source member of the move is deleted. At this point, the
contents of the source member only exist in the edit buffer. If you CANCEL out of the edit session where
the SMOVE command was initiated without saving the changes, the data is lost.

»— SMOVE — member-name >
t AFTER — label ﬂ
BEFORE — label

The AFTER label parameter indicates the line after which to place the member that is being moved. To
create an AFTER label, enter an "A" or "a" in the Line Command field (usually represented by a column of
six-digit numbers on the far left side of your display) for the line you want.

152 z/0S: z/OS ISPF SCLM Guide and Reference

Edit (option 2)

The BEFORE label parameter indicates the line before which to place the member that is being moved. To
create a BEFORE label, enter a "B" or "b" in the Line Command field for the line you want.

SPROF command

The SPROF command allows you to specify parameters that SCLM requires to track a member through the
hierarchy. SCLM displays the SCLM Edit Profile panel, shown in Figure 70 on page 153, to specify a
language for a new member. This panel is also displayed when you end the edit session if you did not
enter a change code on the SCLM Edit - Entry panel when it is required, or if the language of the member
has not yet been specified.

Menu SCLM Utilities Help

SCLM Edit Profile

SCLM Library: PDFTDEV.SBURNF.SOURCE
Member: NEWMEM

Press the Enter key with the language field blank to view a list
of valid languages or enter the desired values and press Enter.

Enter the Cancel command to exit with no change.

Language . .o

Change code . . (Use "=" to retrieve last entry)

Description:

Command ===>

F1=HELP F2= F3=END FA=DATASETS F5=FIND F6=CHANGE
FO=SWAP F10=LEFT F11=RIGHT F12=SUBMIT

Figure 70. SCLM Edit Profile (FLMEINFO)

SCLM Edit Profile Panel fields

Language
The language name to be used to process the member. This field is required and must be the same as
the LANG keyword specified on the FLMLANGL macro.

Press Enter with the language field blank to select from a list of valid languages and their descriptions.

Change code
Specify a change code to indicate why you updated the member. This field is optional unless a change
code verification routine is defined for the hierarchy. Change codes cannot contain commas.

Member Description

Specify a member description for use on the Utility Member List panel (FLMUSM#P) when the field
"Show member Description" is selected on the SCLM Library Utility Entry panel (FLMUS#P).

You can change the information on this panel at any time during the edit session by invoking SPROF. If you
alter the Language field or modify the member, SCLM parses and creates or updates the accounting
record of the member when the member is saved. If you leave the language field blank or enter an invalid
language, SCLM displays a selectable list of valid languages defined to the project.

SCLM processes the member and saves it in your development group if you alter the language. SCLM
processes the member and saves it in your development group if you alter the change code and if the
member does not exist in your development library. If you alter the change code but do not modify the
member and it exists in the development group, SCLM regenerates only the accounting information.

Enter END from the SCLM Edit Profile panel to end SCLM edit profile specifications and return to the SCLM
edit session. Enter CANCEL to cancel any changes you have made on the panel, end SCLM edit profile
specifications, and return to the SCLM edit session.

Chapter 9. Using SCLM functions 153

Edit (option 2)

SREPLACE command

The SCLM SREPLACE command is similar to the ISPF Edit REPLACE command except that the SCLM editor
automatically parses, locks out, and creates an accounting record for the replaced member. Use this
command, not SCREATE, when the member exists in the group.

If you do not enter a change code on the SCLM Edit Entry panel (when it is required), SCLM displays the
SCLM Edit Profile panel shown in Figure 70 on page 153. Also, the replaced member has the same
member attributes as the current member.

If you use SREPLACE and specify a member that does not exist, SCLM calls SCREATE by default so that
you can create the member.

If the member your are editing has a language that specifies ENCODE=Y, when saving the new member,
SCLM will encode the member. For more information, see Chapter 16, “Member encoding and decoding,”

on page 329.

The SCLM SREPLACE command does not offer an extended panel for replacing a member outside the
hierarchy.

The label parameters indicate the lines from which the current member is replaced by the replaced
member. The label parameters are optional.

»tSREPLACE member-name
SREPL j_ Elabell 3
label2

To see an example of using commands with labels, see “SCREATE command” on page 152.

Overriding SCLM command macros

Because the SCLM editor uses ISPF edit macros to perform its functions, you should not override SCLM
command macro definitions, especially the END, SAVE, CANCEL, and RETURN macros. If you need a user-
defined "end" macro, use another command name such as QUIT. At the end of this alternate end macro,
invoke the END, RETURN, SAVE, or CANCEL command to start the SCLM end routines.

If you override an SCLM macro by using DEFINE, the macro is not redefined until you begin a new edit
session.

You can also override SCLM edit macros by entering the ISPF BUILTIN command (for example, BUILTIN
SAVE).

Utilities (option 3)

Figure 71 on page 155 shows the panel SCLM displays when you select option 3, Utilities, from the SCLM
Main Menu.

154 z/0S: z/0OS ISPF SCLM Guide and Reference

Library Utility

Menu Utilities Help

SCLM Utilities Menu

1 Library View, browse, edit, delete, build or promote SCLM
controlled members and update member authorization
codes

2 Sublib Mgmt Browse or delete intermediate records and forms

3 Migration Register the contents of a library with SCLM

4 Database Contents Create reports and tailored data sets against
SCLM database

5 Architecture Report Create architecture report

6 Export Extract SCLM accounting information

7 Import Incorporate exported data into the hierarchy

8 Audit and Version Display Audit and Version membezrs

9 Delete from Group Delete members, accounting records, build maps,
intermediate code and records from a group

10 Package Functions View, delete and restore backed-up packages

11 Unit of Work View and process Unit of Work elements

12 SCLM Explorer Browse the relationship tables of your project

Option ===>

F1=HELP F2= F3=END F4=DATASETS F5=FIND F6=CHANGE
F9=SWAP F10=LEFT F11=RIGHT F12=SUBMIT

Figure 71. SCLM Utilities (FLMUDU#P)

When you select one of these options, the corresponding utility is displayed.

“Library Utility” on page 155

“Migration Utility” on page 175
“Database Contents Utility” on page 177
“Architecture Report Utility” on page 186
“Export Utility” on page 193
“Import Utility” on page 197

“Audit and Version Utility” on page 201
“Delete from Group Utility” on page 211
“Package Backout Utility” on page 214
“Unit of Work Utility” on page 222
“SCLM Explorer” on page 228

“SCLM Search” on page 230

Library Utility

The library utility allows you to browse accounting records, members, and build map records. In addition,
you can use this utility to delete members and their accounting and build map data, view, edit, build and
promote members, and update a member's authorization codes.

The library utility is completely interactive and parallels the ISPF library utility.

Figure 72 on page 156 shows the SCLM panel that appears when you select Option 1, Library, from the
SCLM Utilities panel.

Chapter 9. Using SCLM functions 155

Library Utility

Menu SCLM Utilities Help

FLMUSHP SCLM Library Utility - Entry Panel
Option ===>
blank Display member list E Edit member T Transfer owner
A Browse account info V View member N NOPROM processing
M Browse build map C Build member W Where used
B Browse member P Promote member
D Delete member info U Update auth code
SCLM Library:
Project . : SLMTEST6
Group . . . DEV1
Type SOURCE
Member . . . (Blank or pattern for member selection list)
Select and rank member list data . . AT (T=TEXT, A=ACCT, M=BMAP, S=SUBP)
Enter "/" to select option
/ Hierarchy view Process . . 3 1. Execute
/ Confirm delete 2. Submit
/ View processing options for Edit 3. View options

Show Member Description

Fl1=Help F2=Split F3=Exit F7=Backward F8=Forwazrd F9=Swap
F10=Actions F11=NRETRIEV F12=Cancel

Figure 72. SCLM Library Utility (FLMUS#P)

The fields on the SCLM Library Utility panel are:

Project
The project that you specified on the SCLM Main Menu. An additional field called Alternate is
displayed if you specified an alternate project definition. You cannot change the Project or the
Alternate fields on this panel.

Group
The group that you specified in the Group field on the SCLM Main Menu. The group field can be
modified to specify other groups defined to the project.

Type
The identifier for the type of information in the ISPF library.

Member
The name of an SCLM library member. You can display a member list by leaving the Command field
and the Member field blank or by leaving the Command field blank and entering a pattern as the
member name. See “Specifying selection criteria” on page 179 for details. Valid pattern characters
are the asterisk (*) and the logical NOT symbol (-).

Select and rank member list data

A one, two, or three character string that indicates the kind of information that appears on the
member list panel. You can specify strings composed of the following characters:

T, to display text data; A, to display accounting data; and M, to display build map data.

Each character can only be used once. The order of the characters determines the order of the data on
the member list. This option limits the type of data that appears with each member on the list, and
only members that have the types of data specified will appear. For example, a member that only has
text will not appear if the string AM is specified. All types of data that exist for a member at a particular
level are subject to processing by library utility commands.

156 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

If only two types of data are specified and one of those is A (accounting), the language associated
with the member will also be displayed. If only A is specified, both the language and authorization
code will be displayed.

Hierarchy view
Selects as input the library entered on the panel, as well as all the libraries in its hierarchy view. The
hierarchy is searched from the bottom up for the first occurrence of the specified member. If you do
not select "Hierarchy view", only the library entered on the panel is used as input. This option is valid
with all Library Utility - Entry panel or member list commands except delete, which defaults to a NO
value.

Confirm delete
Allows you to specify whether you want a confirmation panel to appear when attempting to delete
objects (text, accounting information, or build map information) with the SCLM library utility. If you
select this field, the Confirm Delete panel appears every time you request a delete. In addition to
confirming the delete request, this panel enables you to choose which information you want to delete
for the member. If you do not select this field, the Confirm Delete panel does not appear for deletions
and all data is deleted without any additional user interaction.

View processing options for Edit
Allows you to indicate whether you want to verify or update edit processing options or allow them to
default to the values that last appeared on the Edit Data Entry panel. When you select this option, the
SCLM Edit Data Entry panel displays so that you can verify or update edit processing options. If you do
not select it, Edit options default to those values that last appeared on the Edit Data Entry panel. The
panel does not appear.

Show member description
Allows you to display the member list panel FLMUSM#P, which contains an extra line displaying the
description associated with a member. The Description is entered via SPROF command.

Process
Allows you to specify the processing mode for the Build or Promote commands. The value of the
"Process" field is unique to the library utility. You will not be carried to or from the "Process" field on
any other SCLM panel.

Execute
Invokes SCLM Build or Promote in the foreground. The Build or Promote options default to those
values that last appeared on the Build or Promote Data Entry panel. The panel does not appear.

Submit
Invokes SCLM Build or Promote in the background. The Build or Promote options default to those
values that last appeared on the Build or Promote Data Entry panel. The panel does not appear.
View options
Displays the SCLM Build or Promote Data Entry panel so that you can verify or update Build or
Promote processing options before execution.

Note: The value for "Confirm delete" is reset each time the library utility is entered. The values for "Select
and rank member list data", "Process", "Hierarchy view", and "View processing options for Edit", are kept
from session to session until you change them.

Library Utility commands
Type your selection in the Command field.

A,B,orM
SCLM displays the specified member or record if it is present.

While in Browse, all Browse commands are supported. Note that although a hierarchy view may be
specified, the Library Utility only allocates the data set containing the existing version of the requested
member. The Browse command executed from within View can only operate on members within the
allocated data set.

SCLM displays the specified member if it is present.

Chapter 9. Using SCLM functions 157

Library Utility

SCLM deletes member data such as text, accounting, and build map records. When Confirm Delete
has been selected on the Library Utility panel, you can choose which information to delete for the
member (text, accounting information, and/or build map information). Otherwise, all information for
the member is deleted. Delete is only allowed at the group specified on the Library Utility panel.

If you delete a member from a key group that also exists in a non-key group in a higher layer of the
hierarchy, you must delete the member from the non-key group manually.

The SCLM Editor is invoked for the member specified in the Member field. A development group must
be specified in the Group field. Once in the SCLM Editor, all Edit commands are supported. The library
utility allocates the first four key groups for a project. If the member exists at a higher group, the
group containing the member will be allocated, replacing the original fourth allocated group. The
COPY, MOVE, and EDIT commands can only operate on members within the allocated data sets. The
use of COPY or MOVE from within an Edit session invoked from the utility is not recommended.

SCLM Build is performed on the specified member.

SCLM modifies the "account status" on the accounting record to determine if the editable member is
promotable or not. This option is only available on members with an accounting record and an
"accounting status" of:

- EDITABLE
« NOPROM-N,or
« NOPROM-R

For more information on this option, see Chapter 15, “Leaving a Member Behind on Promotion,” on
page 315.

SCLM Promote is performed on the specified member.

SCLM displays an input panel and updates the authorization code according to your input. Update is
only allowed at the group specified on the Library Utility panel. (To delete or update any data, you
must have at least UPDATE authority to the specified data set.) Any value entered in the "New
authorization code" field on the input panel remains there until it is changed by the user or the library
utility is exited and entered again. There is a brief period during which changes made to a member's
authorization code by another session or user will not be recognized. If you receive an unexpected
error message while updating a member's authorization code, use the browse accounting record
command to check the member's current authorization code. If the authorization code needs to be
updated, try the update authorization code command again.

SCLM modifies the "Change user ID" field on the accounting record to transfer ownership of the
member to another user. This allows the new owner to modify the member. This option is available if
the following conditions are true:

- member level locking is enabled

« The user who is accessing the option matches the "Change user ID" in the accounting record or is
defined as an SCLM administrator

« The accounting record exists in a development group
Invokes the Where-used function. SCLM displays a list of components which include the selected

component. Library utility commands (except W) may then be issued against the list members.

To perform commands against several members at once, use the member selection list.

158 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

Member selection list

You can browse, view, delete, build, promote, display Where-used information, or update the
authorization code for members by making selections from a member selection list. To display a member
selection list, perform the following steps:

1. Leave the Command field blank.

2. Type the group and type information in the appropriate fields. The Project field contains the project
you specified on the SCLM Main Menu. You cannot change this field here.

3. Leave the Member field blank or enter a pattern.

4. Choose the data to appear and the order to display it on the member list panel by entering a string in
the "Select and rank member list data" field.

5. Indicate whether you want a hierarchy view by entering a slash (/) in the "Hierarchy view" field.
6. Press Enter.

Note: The NRETRIEV command key is enabled to work with this option. See “Name retrieval with the
NRETRIEV command” on page 141 for more information.

Figure 73 on page 159 shows the panel SCLM displays when you complete the instructions for displaying
a member list. This display contains text, accounting, and build map data, indicating that the string "TAM"
was entered for the "Select and rank member list data" field. Use the scroll commands or the LOCATE
command to scroll the list.

Menu SCLM Functions Utilities Test Help

FLMUSL#P st : SLMTEST6.DEV1.SOURCE - HIERARCHY VIEW - Member 1 of 23
Command ===> Scroll ===> CSR
A=Account M=Map B=Browse D=Delete E=Edit V=View
C=Build P=Promote U=Update T=Transfer N=Noprom W=WhereUsed
_ Member Status Account Language Text Chg Date Chg Time
_ AAAA DEV1 TXT2 DEV1 2002/08/02 13:31:12
_ CPYRITE DEV1 DTL DEV1 2002/01/21 13:08:15
_ DDDDD DEV1 2002/06/27 10:43:30
_ DTL2 DEV1 DTL DEV1 2002/01/21 13:08:04
_ FLMOL1EQU DEV1 HLAS DEV1 2007/01/29 12:07:33
_ FLMOIMD1 DEV1 HLAS DEV1 2002/02/14 12:24:05
_ FLMO1MD2 DEV1 PLIO DEV1 2002/02/14 12:24:10
_ FLMOIMD3 TEST HLAS TEST 2002/02/14 12:23:52
_ FLMOIMDA4 RELEASE HLAS RELEASE 2001/10/30 16:58:57
_ FLMOIMD5 RELEASE HLAS RELEASE 2001/10/30 16:58:57
_ FLMO1MD6 DEV1 HLAS DEV1 2002/01/22 13:06:08
_ HANK DEV1 TEXT DEV1 2002/05/24 10:26:00
_ HANK2 DEV1 TEXT DEV1 2002/04/17 11:04:40
_ HANK3 DEV1 TEXT DEV1 2002/06/27 12:57:47
_ PMR60436 DEV1 CoB2 DEV1 2002/01/31 12:18:10
_ TESTS1 DEV1 PLIO DEV1 2002/05/06 11:28:22
_ TESTS2 DEV1 PLIO DEV1 2002/02/15 12:01:11
_ TEST6 TEST TEXT TEST 2002/06/17 14:11:05
_ TSTPETE1 DEV1 TEXT DEV1 2002/04/15 10:19:36
_ VRCPTD1 DEV1 DTL DEV1 2002/01/21 13:08:24
_ Z1 DEV1 DTL DEV1 2002/01/21 17:48:57
_ Z2L DEV1 DTL DEV1 2002/01/21 17:49:14
_ 2300103 DEV1 DTL DEV1 2002/01/08 17:50:09
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F11=NRETRIEV F12=Cancel

Figure 73. Member Selection List (FLMUSL#P)

Chapter 9. Using SCLM functions 159

Library Utility

Another way to view a member list is shown in Figure 74 on page 160. In this example, the string "AT" was
specified for the "Select and rank member list data" field, causing accounting and text data, in that order,
to appear on the member list panel. Also note that a hierarchy view with the member description was
requested for this member list.

Menu SCLM Functions Utilities Help

FLMUSM#P st : SLMTEST6.DEV1.SOURCE - HIERARCHY VIEW - Member 1 of 23

Command ===> Scroll ===> CSR

A=Account M=Map B=Browse D=Delete E=Edit V=View

C=Build P=Promote U=Update T=Transfer N=Noprom W=WhereUsed
Member Status Account Language Text Chg Date Chg Time

_ AAAA DEV1 TXT2 DEV1 2002/08/02 13:31:12

_ CPYRITE DEV1 DTL DEV1 2002/01/21 13:08:15
copywrite copy book

_DDDDD DEV1 2002/06/27 10:43:30

_ DTL2 DEV1 DTL DEV1 2002/01/21 13:08:04
DTL source for panel TTMENU

_ FLMO1EQU DEV1 HLAS DEV1 2007/01/29 12:07:33
Assembler copybook - Register equates

_ FLMO1MD1 DEV1 HLAS DEV1 2002/02/14 12:24:05
Routine Initialization

_ FLMO1MD2 DEV1 PLIO DEV1 2002/02/14 12:24:10
Routine Prolog

_ FLMO1MD3 TEST HLAS TEST 2002/02/14 12:23:52

_ FLMO1MD4 RELEASE HLAS RELEASE 2001/10/30 16:58:57

_ FLMO1MD5 RELEASE HLAS RELEASE 2001/10/30 16:58:57

_ FLMO1MD6 DEV1 HLAS DEV1 2002/01/22 13:06:08

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 74. Member Selection List with Hierarchy and Member Description View (FLMUSM#P)

The fields that appear on the SCLM Member Selection List panel are:

Member
The names of the members fitting the criteria you specified on the SCLM Library Utility - Entry panel.

Status
SCLM displays the status of the member according to the line command you select. The status field
indicates the action that was taken for the selected member. For example, a status of *EDITED will
appear next to any member for which the 'E' command is selected, even if the member is not saved.
The status for delete indicates the group at which the delete occurred. The status displayed for each
command is shown in the following example:

A Display an accounting record *BRACCT
B Browse a member *BRTEXT
C Build a member *BUILT
D Delete a member *D-GROUP1
E Edit a member *EDITED
M Display a build map record *BRBMAP
N Change Promote Processing *NOPROM
P Promote a member *PROMOTED
T Transfer ownership *TRANSFRD
U Update an authorization code *UPDATED
v View a member *VIEWED

160 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

W Display Where-used Info *WHEREUSE

When an error occurs or the member name is changed on the edit or Build Data Entry panel, the status
for the member will be blank.

Account
A group name in this field indicates that the accounting information for the associated member exists.
Language
The language of the member appears in this column when accounting data is requested and when
space permits.
Text
A group name in this field indicates that the member exists.
Chg Date
The value of this field depends on the type of data requested for display. When text data is requested,
this field contains the last change date for the member from the PDS directory. If accounting data is
requested but text is not, this field contains the change date from the accounting record. If only build
map data is requested, the change date from the build map appears.
Chg Time
The value of this field depends on the type of data requested for display. When text data is requested,
this field contains the last change time for the member from the PDS directory. If accounting data is
requested but text is not, this field contains the change time from the accounting record. If only build
map data is requested, the change time from the build map appears.
Bld Map
A group name in this field indicates that the build map record for the associated member exists.
Authcode

The current authorization code for the member appears in this column when accounting data is
requested and when space permits.

The following primary commands are valid on the Member Selection List:

SORT
The SORT command sorts the member list by any field displayed on the member list, except the line
command field and Status field. The field names are the column headings.

REFRESH
The REFRESH command, which can also be entered as REF, refreshes the member list, adding new
members, removing those that have been deleted, and updating the information displayed for each
member. It also resets the line command field and Status field and sorts the member list again by
member name. Any pending line commands are processed before the REFRESH command.

HIER
The HIER command is used to reset the Hierarchy View value specified on the Library Utility panel
from the member list. Syntax is as follows:

HIER ON|OFF

HIER OFF displays only those members found in the group specified on the Library Utility panel. HIER
ON displays the first occurrence of a member found in the specified group or any higher group within
the view of the project hierarchy.

LOCATE

The LOCATE command scrolls the list to the requested member.
uUpP

Scrolls up.

DOWN
Scrolls down.

All of the Library Utility line commands can also be entered as primary commands from the member list
command line. The syntax for the primary commands is:

Chapter 9. Using SCLM functions 161

Library Utility

command member

where command is the 1-character command and member is the member against which the command is
to be performed. The Edit (E) primary command can be used to edit a new member. At the end of the edit
session, the new member will be added to the list in sorted order.

Accounting record

If you enter the A line command to display an accounting record, SCLM displays a panel showing the
information recorded for the member as shown in Figure 75 on page 162.

s PDFTDEV.SVT.EXEC(FLMEBLD) : Accounting Record Y
More: +
Physical Data Set . : PDFTDEV.SVT.EXEC
Accounting Status . : EDITABLE Change Group : MOS
Change User ID . . : PO20136 Authorization Code . : BASE
Membaer Version . . : 2 Auth. Code Change :
Language : REXX Translator Version . :
Creation Date . . . : 1987/06/26 Change Date @ 18997/06/30
Creation Time . . . : 168:55:02 Change Time : 10:08:00
Promote User ID . . : PODFTOOL Access Key @
Promote Date . . . : 1887/07/14 Build Map Name . . . :
Promote Time . . . : 19:02:40 Build Map Type . . . :
Predecassor Date . : 0000/00/00 Build Map Date . . . : 1997/06/30
Predecessor Time . : 00:00:00 Build Map Time . . . : 10:08:00

Enter /" to select option

_ Display Statistics

_ Number of Change Codes 1]
_ Number of Includes 0
_ Number of Compilation Units : O
Command ====
Fi=Help F2=5plit F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

/

Figure 75. Accounting Record (FLMUSA#P)

The display fields on the Accounting Record panel cannot be modified.

Use a slash (/) to select an option and press Enter to display additional panels. You can browse the
statistics or lists of change codes, includes, compilation units, or user entries referenced by a member.
You can also scroll the lists.

Physical Data Set
The physical data set in which the SCLM-controlled member actually resides. SCLM allows you to
define project data sets that don't have conventional SCLM data set names by providing SCLM aliases
for them. When this is the case, the name appearing on the panel title is the SCLM alias for the actual
data set in the "Physical Data Set" field.

Accounting Status
The status of the member.

EDITABLE
Members that you can edit

NON-EDIT
Members that SCLM creates as a result of build processing

LOCKOUT
Members that are locked at the development group in which they exist but have not been parsed.
You can use the SCLM Editor or Migration Utility to change the status of these members to
EDITABLE before attempting to build or promote them.

INITIAL
Members for which a lock has been requested. This status generally appears while a member is
being edited. When the edit is complete, the status changes to EDITABLE.

162 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

NOPROM-N
Members that you can edit which, on promotion, are not copied to the next level. The build maps
containing this member are not rebuilt, even if the associated language specifies an FLMLRBLD
macro which would cause a rebuild.

NOPROM-R
Members that you can edit. On promotion the member and the build maps containing this member
are not copied to the next level. Once the copy phase is complete, SCLM invokes a build to rebuild
these build maps using the version of the member at the next level or above.

Change User ID
The user ID of the person who made the last update to the member.

Member Version
The number of times that an EDITABLE member was drawn down. The member version is also
updated whenever the language of the member is changed. For a NON-EDIT member, such as OBJ, it
is the number of times that the member was generated by SCLM. New members use a version of 1.
Language
The language of the member.
Creation Date
The date the member was first registered with SCLM.

Creation Time
The time the member was first registered with SCLM.

Promote User ID
The user ID of the person who last promoted the member.

Promote Date
The date the member was last promoted.

Promote Time
The time the member was last promoted.

Predecessor Date
The change date of the member that this member overlays when it is promoted up the hierarchy.

Predecessor Time
The change time of the member that this member overlays when it is promoted up the hierarchy.

Change Group
The name of the group in which the member was last updated.

Authorization Code
The current authorization code for the member.

Auth. Code Change
A nonblank value indicates that SCLM is attempting to update the Authorization Code for this member.
If the update completes successfully, the value of this field becomes the new authorization code of
the member.

Translator Version
The version of the translator used during build processing.

Change Date
The last date a developer modified the member.

Change Time
The last time a developer modified the member.

Access Key
An identifier used to restrict access to a member.

Build Map Name
For NON-EDIT members, this field specifies the name of the build map that was created when the
NON-EDIT member was created. For EDITABLE members, this field is blank.

Chapter 9. Using SCLM functions 163

Library Utility

Build Map Type
For NON-EDIT members, this field specifies the type of the build map that was created when the
NON-EDIT member was created. For EDITABLE members, this field is blank.

Build Map Date
The date used by SCLM to determine if the member has changed since the last build. For EDITABLE
members, this field is usually the same as the Change Date field. When the Change Date field is
updated, the Build Map Date field is updated. For NON-EDIT members, this field is the date of the last
build of the member.

Build Map Time
The time used by SCLM to determine if the member has changed since the last build. For EDITABLE
members, this field is usually the same as the Change Time field. When the Change Time field is
updated, the Build Map Time field is updated. For NON-EDIT members, this field is the time of the last
build of the member.

Display Statistics
SCLM displays the Accounting Record Statistics panel, shown in Figure 76 on page 164.

Number of Change Codes
The number of change codes entered against the member. See Figure 77 on page 166.

Number of Includes
The number of include references in the source member. See Figure 78 on page 167.

Number of User Entries
The number of user data entry records associated with the member.

Statistics

SCLM displays statistical information, as shown in Figure 76 on page 164, when you enter a "/" in the
Display Statistics field on the Accounting Record panel. These statistics are parser-dependent.

e
|:|"|j o4
PROJ1 .USERID.CLIST(FLMOIMDS) : Statistics
Statistics:
Total Lines : 13 Total Statements R
Comment Lines 2 Comment Statements : 2
Noncomment Lines . 5 Control Statements : 0
Blank Lines : 6 Assignment Statements . : 0
Prolog Lines . : 0 Noncomment Statements . : 2
Command ===x>
Fl=Help F2=5plit F3=Exit F7=Backward F8=Forward F9=Swap
Fl2=Cancel

Figure 76. Accounting Record Statistics (FLMUSS#P)

The fields on the Accounting Record Statistics panel are:

164 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

Total Lines
The total number of lines in the member, which is equal to the sum of comment lines, noncomment
lines, and blank lines.

Comment Lines
The number of comment lines. A comment line is any line that has comment information only. If a line
has both a statement and a comment, SCLM considers it a noncomment line.

Noncomment Lines
The number of source lines. A noncomment line is a source line that contains at least part of a
noncomment statement. If a line has both a statement and a comment, SCLM considers it a
noncomment line.

Blank Lines
The number of blank lines in the member. A blank line is language-independent; no nonblank
characters can be on it.

These statistics are parser-dependent.

Prolog Lines
The number of prolog lines in the member.

Total Statements
The sum of the comment statements and the noncomment statements in the member.

Comment Statements
The number of comment statements. A comment statement is denoted by a set of beginning and
ending comment delimiters for the particular language being parsed. If an ending delimiter is not
defined for a language, the end of the line is used. A comment statement can span several lines, or
several comment statements can exist on a single line.

Control Statements
The number of logical control statements.

Assignment Statements
The number of assignment statements.

Noncomment Statements
The number of complete statements that SCLM can process. Noncomment statements are language-
dependent, follow language syntax rules, and are separated by the language delimiter. A noncomment
statement can span several lines, or several noncomment statements can exist on a single line.

Note: The parser that is invoked for the member determines the field values. The definitions apply for
ISPF-supplied parsers.

Change code list

Figure 77 on page 166 is an example of the information SCLM displays when you entera "/" in the
"Number of Change Codes" field on the Accounting Record panel. If you are not allowed to delete the
records you specify, the line command field is hidden and only the Change Code, Change Date, and
Change Time are displayed.

Chapter 9. Using SCLM functions 165

Library Utility

PDFTDEV.MOS.SOURCE (PROGO1) : Change Code List Member 1 of 2

Line Command: D - Delete change code
Enter Cancel command to exit without processing selections

Delete Status Change Code Change Date Change Time

CCo2 2000/02/04 13:41:00

cco1 2000/02/04 13:40:43
""""""""""""""""""" Bottom of Data skkskskkkhkskskskkkhokskskkkkhkhkkkk kot

Command ===> SCROLL ===> PAGE
Fl=Help F3=Exit F12=Cancel

Figure 77. Change Code List - Records That Can Be Deleted (FLMUSC#P)

The fields on the Change Code List panel are:

Delete

You specify that you want to delete the change code when you enter D in this field. SCLM selects the

change code for deletion.

Status
SCLM displays *SELECT to indicate the change code you selected. Enter the END command to
confirm the delete request.

Change Code
A value assigned to indicate why a member was updated.

Change Date

The last date a developer modified the member for the associated change code. The Change Date on

the top of the list is the most recent.

Change Time
The last time a developer modified the member; it is associated with the Change Date.

Note: If you alter the change code, but do not modify the member, the change date and time of the
change code will be the same as the date the member was last modified.

Include list

Figure 78 on page 167 is an example of the information SCLM displays when you enter a "/" in the
"Number of Includes" field on the Accounting Record panel.

166 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

5| Session A - [24x80] A =0
File Edit Tramsfer Appearancs Communication Assist Window Help
POFTDEY.SVT.S0URCE (ISRSVCBD) : Include List Member 1 of 44

Include Include-set

SPFVLST
DCLEVOLS
DCLSTRAU
DCLETRA
DCLETHLS
DCLETSNL
DCLECATI
DCLSUCE

Command ===> SCROLL ===> PAGE

F1 -Heli F3=Exit Fi2=Cancel

Figure 78. Include List (FLMUSI#P)

The fields on the Include List panel are:

Include
The name of an include reference in the source member. An include reference is a generic term for
code that SCLM inserts when it compiles the source member. The syntax of an include statement in a
program is language-dependent and is defined by language syntax rules.

Include set
The include-set name is used to associate an include with the types in the hierarchy where that
include can be found. The include-set name is returned by the parser. A blank name indicates that the
include is associated with the default include set.

User data entries

Figure 79 on page 168 is an example of the information SCLM displays when you enter a / in the "Number
of User Entries" field on the Accounting Record panel.

Chapter 9. Using SCLM functions 167

Library Utility

E%#[] o

PROJ1.PFS(FLMO1MDS) : User Data Entries

Line Command: D - Delete User Data Entry
Enter Cancel command to exit without processing selections

Del Stat Rec# User Data Entry

1 This record is very long to prove that twe lines can be shown
in one record.
2 This record is short.

Thkkkkdkhkdkkrhkhkkd bk b rdhbdrd kb d b kx> ¥ *Potbom Of data Fhdkd bk hkd b kb r b kd bbb bbb hid

Command ===> SCROLL ===> PACE
Fl=Help F2=5plit F3=Exit F7=Backward F8=Forward F3=Swap
Flz=Cancel

Figure 79. User Data Entries (FLMUSE#P)

The fields on the User Data Entries panel are:

Del
You specify that you want to delete the user data entry record when you select D in this field.

Stat
SCLM displays *SEL to indicate the user data entry record you selected. Enter the END command to
confirm the delete request.

Rec#
SCLM displays a record number with the first line of each user data entry record.

User Data Entry
Project-specific information entered into the accounting record by the SAVE service. The user data
entry record can span two lines for a maximum of 128 characters.

Build map record

Enter the M line command on the SCLM Library Utility panel or on the member selection list to display a
build map record. The Build Map Record panel, shown in Figure 80 on page 169, displays the fixed build
map information SCLM records for a member.

168 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

PDFTDEV.SVT.SOURCE (ISRSVCBD) : Build Map Recoxd

General data:

Change User ID . : P020136 Change Group . . : MOS
Member Version . : 117 Change Date . . : 2000/01/10
Language : CCMAP Change Time . . : 21:51:58
Creation Date . : 1997/10/14 Promote Date . . : 2000/01/21
Creation Time . : 17:18:43 Promote Time . . : 21:27:17
Promote User ID. : PDFTOOL
Language Version . . : PLX240 Build Map Date . : 2000/01/10
Build Map Name . . . : ISRSVCBD Build Map Time . : 21:51:58
Build Map Type . . . : SOURCE

Enter "/" to select option
_ Review Build Map Contents

Command ===>
Fl=Help F3=Exit F12=Cancel

Figure 80. Build Map Record (FLMUSB#P)

The fields on the Build Map Record panel are:

Change User ID
The user ID of the person who made the last update to the member.

Member Version
The number of times that the build map has been generated by SCLM. The first time a build map is
generated a version of 1 is used.

Language
The language of the build member. This language is determined by SCLM Build; it is not specified by
the user or the project manager.

Creation Date
The date the build map was first created.

Creation Time
The time the build map was first created.

Change Group
The name of the group in which the member was last updated.

Change Date
The last date the member was modified.

Change Time
The last time the member was modified.

Promote Date
The date the member was last promoted.

Promote Time
The time the member was last promoted.

Promote User ID
The user ID of the person who last promoted the member.

Translator Version
The version of the translator used during build processing.

Language Version
The version of the language that SCLM uses in language-based builds.

Build Map Name
The name of the member with which the build map is associated.

Chapter 9. Using SCLM functions 169

Library Utility

Build Map Type
The type of the member with which the build map is associated.
Build Map Date
The date of the build that created the build map.
Build Map Time
The time of the build that created the build map.
Review Build Map Contents

SCLM displays the Build Map Contents panel, shown in Figure 81 on page 170, when you select this
field.

Build map contents

When you enter a / in the Review Build Map Contents field, SCLM displays the build map contents in a
browse data set, as shown in Figure 81 on page 170. The data set shows the contents of a build map
record for an architecture defined in a CC architecture member.

BROWSE PDFTDEV.SVT.SOURCE (ISRSVCBD): Build Map Contents Line 00000000
"""""""""""""""""" Top 0f Data *kkkkdkkkkkshkkkhhkhkhkkhhkshkkhhrk
Build Map Contents

Keyword Member Type Last Time Modified Ver
SINC ISRSVCBD SOURCE 2000/01/10 21:39:17 85
0BJ ISRSVCBD 0BJ 2000/01/10 21:51:58 514
I1% SPFPROC SOURCE 1999/10/04 19:01:00 12
Il DCLCMLST SOURCE 1999/01/11 14:33:00 2
I1% DCLSCFIG SOURCE 2000/01/10 21:13:32 75
I1x DCLSSYS SOURCE 1995/05/11 11:24:00 4
I2% DCLSTLDX SOURCE 1995/05/11 11:25:00 6
I1x% DCLSTLD SOURCE 2000/01/10 21:14:54 58
I1x DCLSTFD SOURCE 2000/01/10 21:14:46 30
I3% SPFTSCN SOURCE 1989/02/10 15:48:00 1
I2% SPFTSC SOURCE 1999/06/23 13:08:00 21
I1% DCLSTSC SOURCE 1994/01/21 14:52:00 2
I3% SPFTSPN SOURCE 1994/03/02 15:54:00 1
I2% SPFTSP SOURCE 1999/12/09 14:19:09 41
I1% DCLSTSP SOURCE 1993/01/27 16:22:00 4
Command ===> Scroll ===> PAGE
Fl=Help F3=Exit F5=Rfind F12=Cancel

Figure 81. Build Map Contents (FLMUSBRP)

The fields on the Build Map Contents panel are:

Keyword
You can use certain keywords to identify architecture information. See “Architecture statements” on
page 275 for more details. The internal build map keywords, denoted with an asterisk, are described
as follows.

The architecture member example contains two keywords: OBJ, and LIST. If a keyword is denoted
with an asterisk (*), it includes references found in source member FLMO1MD5.

Member
The name of the member referenced in the architecture member.

Type
The name of the type containing the member.

Last Time Modified
For an EDITABLE member, this field is the last time SCLM parsed and stored the specified member.
For SCLM-generated (NON-EDIT) members, such as OBJ and LIST, this field is the last time SCLM
generated the member.

470 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

Internal Keywords
Keywords that SCLM uses to track references. The internal keyword I# indicates the group in which
the members were first referenced. The following internal keywords are produced by SCLM internal
processing and supported by SCLM. They cannot be used in the actual architecture definitions.

Keyword
Description

PINCL*
An architecture definition that generates the output shown on the previous build map entry. The
output represents an input to the translate process.

INT*
An intermediate that was generated by the build of the member that is being viewed. This keyword
represents the output of a translate process.

INTDEP*
Intermediate member on which the member being viewed is dependent. This keyword represents
the input of a translate process.

WITH*
Indicates an upward dependency.

DYNI*
Indicates a dynamic include.
Ix*
Includes as determined by the accounting record for the main source member, where x is in the
range (1-99).
EXTDPEND*
Indicates an external dependency.

NOPROM
Indicates member is left behind on promotion.

Authorization code update

Type U on the Library Utility panel or the member selection list to display the Authorization Code Update
panel. Figure 82 on page 172 shows the panel SCLM displays for you to update the authorization code for
a member.

Chapter 9. Using SCLM functions 171

Library Utility

Bh| Sesslon A - [24x80] IZ_ o ([
Flle Edit Tramsfer Appearance Communication Assist Window Help
Menu SCLM Funmctions Utilities Help
M Menu SCLM Hilities Help 1 of 38
A SCLM Authorization Code Updates
Member to be updated : POFTDEVY.MOS.SOURGE (BUBBA) uage
01ld Authorization Code . : BASE
MNew Authorization Code . :
V'l command ===» LANG
Fl1=Help F2=5plit F3=Exit F7=Backward F8=Forward
Fa=5wap F10=Actions F12=Cancel WVE
FORTRAN MOS 1982/02/05 12:49:50
FORTRANZ MOS 1992/02/05 12:49:53
FORTRANS Mos 1992/02/05 12:49:65
LINECNT MoS 1998/07/08 11:29:37 MOS PASCAL
MATTOO Mos 1998/03/23 17:07:09
MOS Mos 1988,/03/24 13:00:11 MOS ARCHDEF
Command ==== Scroll ===> PAGE

F1-Heli F3=Exit FlO0=Actions Fi12=Cancel

Figure 82. Authorization Code Update (FLMUSU#P)

The fields on the Authorization Code Update panel are:
Member to be updated
The member name you entered in the Member field on the SCLM Library Utility panel.

Oold Authorization Code
The current authorization code for the member.

New Authorization Code
The new authorization code for the member.

Enter the new authorization code in this field. Then press Enter to confirm the update request and
update the authorization code, or enter END to cancel the update request. Authorization codes cannot
contain commas.

Transfer ownership

Type T on the Library Utility panel or against the member selection list to display the SCLM Transfer
Ownership panel (FLMUSR#P).

The fields on the Transfer Ownership panel are:
Member to be updated
The member name you entered in the Member field on the SCLM Library Utility panel.

Old Member Userid
The ID of the user who currently has the member locked.

New Member Userid
The ID of the user who will control the member from now on.

Where-used

Enter the W line command on the SCLM Library Utility panel or on the member selection list to display a
list of the components which include the selected component. A component is considered to be included
if it has an entry in the Include List of another component, or if it has an include-type entry in the Build
Map of another component. Include-type build map entries are: SINC, PROM, I*, PINCL*, INCL, DYNI*, and
INCLD.

172 z/0S: z/OS ISPF SCLM Guide and Reference

Library Utility

The Where-used panel shown in Figure 83 on page 173 displays the list of components which include the
selected component.

Menu SCLM

FLMUSF4#P d
Command ===>

A=Account M=
C=Build P=
____+____1_

S Member

ASM@NOO1
ASM@NO0O2
FLMOL1CMD
FLMOIMD3
FLMOI1MD4
FLMO1MD5
FLMOIMD6
LB@SRCO1
NEW@MDO1
_ NEW@MD0O2
~ + TST@SCLM

+ + + + + +

EFunctions Utilities Test Help
LEEBURR.DEV1.SOURCE (FLMO1EQU) Mem
SCROL

Map B=Browse D=Delete E=Edit V=View
Promote U=Update S=UOW/Edit T=Transfer N=NOPROM
___+__

Lv Type AcctGrp BmapGrp AcctlLang BmaplLang

1 SOURCE DEV1 DEV1 NOBJ GLMAP

1 SOURCE DEV1 *NOBMAP* NOBJ *NOBMAP*

1 ARCHDEF DEV1 DEV1 ARCHDEF CCMAP

1 SOURCE DEV1 DEV1 HLAS GLMAP

1 SOURCE RELEASE DEV1 HLAS GLMAP

1 SOURCE RELEASE DEV1 HLAS GLMAP

1 SOURCE RELEASE DEV1 HLAS GLMAP

1 SOURCE DEV1 DEV1 HLAS CCMAP

1 SOURCE DEV1 *NOBMAP* NOBJ *NOBMAP*

1 SOURCE DEV1 DEV1 HLAS CCMAP

1 SOURCE TEST TEST C20BOOGO GLMAP

kkkkkkkkkkkkkkkkkkkkkkkkkxxxx Bottom of data

*khkkkkkkkkhkkkhkhkkkkkhkhkkhhkkhkkhkkkhkhkkhkhkkkhhk

Fl1=Help
F10=LEFT

F2=Split F3=Exit
F11=RIGHT F12=Cancel

Figure 83. Where-used panel (FLMUSF#P)

The fields that appear on the Where-used panel are:

S

Input field for row command.

F7=Backward

F8=Forward F

ber 1 of 38
L ===> CSR

Dyn (ON)
X=Expand

Keyword
SINC
SINC
I1x
I1x
Il
I1+%
I1+%
SINC
SINC
SINC
I1+*

9=Swap

All row commands described in "Library Utility commands", except for the W command, can be used.

Two additional commands are available:

X

Can be used to expand and collapse nested rows (where possible).

S

Invokes Unit Of Work if the selected member is an Archdef; otherwise, Edit is invoked.

Note: You must exit and re-enter the panel to refresh the WhereUsed list when parts are added or

deleted by commands issued from the WhereUsed member list.

Name

The name of the including (or parent) components. The names are indented according to nesting level
and the field may be scrolled left and right. The following indicators can appear to the left of the

name:

+

The row can be expanded.

Chapter 9. Using SCLM functions 173

Library Utility

The row can be collapsed.
The row has a circular reference and will not be expanded.

The row has exceeded the nesting level.

Lv
The nesting level.

Type
The type of the member.

AcctGrp
Group where the member's account record was found.

If the Acct record is not found, then AcctGrp shows "*NOACCT*".

BmapGrp
Group where the member's build map was found.

If the Bmap record is not found, then BmapGrp shows "*NOBMAP*",

AcctLang
Language of the member's account record.

BmapLang
Language of the member's build map record.

Keyword
The keyword used when referring to the included component.

Change Promote Processing (NOPROM)

Type N on the Library Utility panel or against the member selection list to display the SCLM Not Promoted
Member Update panel (FLMUSN#P).

Menu SCLM Utilities Help

SCLM Not Promoted Member Update
Command ===>

SCLM Library:

PROJECT : SLMTESTé
GROUP : DEV1
TYPE : SOURCE
MEMBER : FLMOI1EQU
Options

NOPROM: 1 1. No promote (Rebuild)
2. No promote (No Rebuild)
3. Remove no promote status

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 84. SCLM Not Promoted Member Update panel (FLMUSN#P)

The fields on this panel are:

PROJECT
The SCLM project currently being maintained.

174 z/0S: z/OS ISPF SCLM Guide and Reference

Migration Utility

GROUP
Group of the member that is being changed.
TYPE
Type of the member that is being changed.
MEMBER
Member that is being changed.
NOPROM
Determines how the promote processing for this member is to be modified. Valid values are:
No promote (No Rebuild)

Sets the Accounting Status field in the accounting record to NOPROM-N. On promotion, the
member is not copied to the next level. The build maps containing this member are not rebuilt,
even if the associated language specifies an FLMLRBLD macro which would cause a rebuild.

No promote (Rebuild)
Sets the Accounting Status field in the accounting record to NOPROM-R. On promotion, the build
maps containing this member and the member itself are not copied to the next level. Once the
copy phase is complete, SCLM invokes a build to rebuild these build maps using the version of the
member at the next level or above.

Remove no promote status
Sets the Accounting Status field in the accounting record to EDITABLE. Normal promotion of the
member and associated build maps occurs.

For more information on this option, see the Chapter 15, “Leaving a Member Behind on Promotion,”
on page 315.

Migration Utility

Using the migration utility, you can introduce members or groups of members to an SCLM project and
place them under SCLM control in a development group. The migration utility also lets you verify
authorization codes, prohibit simultaneous updates of members, and collect statistical, dependency, and
historical information for each member processed without using the SCLM edit function. SCLM collects
dependency information, which identifies software components that need another software component to
complete successfully.

Before you start MIGRATE, the members must exist in the development library you specify. Upon
successful completion of MIGRATE, each member selected will have valid SCLM accounting information.
A typical scenario used to migrate existing project data follows:

1. Copy all of the members that have the same language into a development library.

2. Start MIGRATE using * for the member pattern and the appropriate language to parse all members and
store their statistical, dependency, and historical information.

3. Copy all of the members that have a different language into the development library.
4, Start MIGRATE again using x for the member pattern and the new language.
5. Continue until all of the members have been migrated.

If some of the members have SCLM accounting information, the MIGRATE service verifies that the
accounting information matches the member in the development library. MIGRATE takes no action for
members that already have valid SCLM accounting information, unless executed in forced mode.

Use this utility when you have a large number of members that have not been entered in your project
database, such as members that you did not create with the SCLM edit function.

In addition to the SCLM editor, the Migration Utility lets you indicate the members you want tracked. Use
this utility to enter one or more members into a database of a project (for example, during a conversion to
SCLM). In development groups, you can also use it to lock, parse, and create accounting records for
members that have not been registered to SCLM.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits simultaneous updates of
members, and collects statistical, dependency, and historical information for every member processed.

Chapter 9. Using SCLM functions 175

Migration Utility

SCLM stores this information in the database of a project. For a complete description of the lock, parse,
and store process, refer to:

» “LOCK—Lock a Member or Assign an Access Key” on page 426

« “PARSE—Parse a Member for Statistical and Dependency Information” on page 438

« “STORE—Store Member Information in an Accounting Record” on page 455

Figure 85 on page 176 shows the panel that appears when you select Option 3, Migration, from the
Utilities Panel.

Menu SCLM Utilities Jobcard Help

SCLM Migration Utility - Entry Panel
Command ===>

Selection criteria:

Project . : PDFTDEV

Group . . . PDFTDEV

Type MOS

Member . . . SOURCE (Pattern may be used)
Member information:

Authorization code . . REL Mode 1 1. Conditional

Change code 2 2. Unconditional

Language PASCAL 3. Forced

Subproject
Output control:

Ex Sub Process . . 2 1. Execute

Messages . . 3 3 1. Terminal 2. Submit

Report . . . 3 3 2. Printer

Listings . . 3 3 3. Data set Printer . . _

4. None Volume
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel
Figure 85. SCLM Migration Utility (FLMUM#P)

Note: The NRETRIEV command key is enabled to work with this option. See “Name retrieval with the
NRETRIEV command” on page 141 for more information.

The action bar displays the same choices as those discussed in “SCLM main menu action bar choices” on
page 144. An additional choice is Jobcard.

The fields for the Migration Utility - Entry panel are.

Project
The project that you specified on the SCLM Main Menu. You cannot change this field. An Alternate field
also appears if you specified an alternate project.

Group
The group in which the members to be migrated are located. This group must be defined in the project
definition and must be a development group.

Type
The type in which the members to be migrated are located. This type must be defined in the project
definition.

Member

The name of the member you want processed. You can use patterns for the member name. See
“Specifying selection criteria” on page 179 for details.

Authorization code
The authorization code for a member. SCLM cannot process a member if the authorization code
assigned to a member is not in the group being accessed. Authorization codes cannot contain
commas.

176 z/0S: z/OS ISPF SCLM Guide and Reference

Database Contents Utility

Change code
The change code for the member. To enter a different change code for the member, type over the
displayed change code. A change code verification routine can verify the code you entered before it
processes the member. Change codes cannot contain commas.
Language
The language of the member. See Chapter 22, “SCLM translators,” on page 563 for a list of languages
for which SCLM supplies parsers.
Mode
Select one of the following modes:

Conditional

To stop processing members if migrate discovers an error that is greater than the GOODRC
parameter specified for a language parser in the project definition.

If you have a list of members that you want to place under SCLM control, and migrate fails for one
of those members, processing stops after the first error. Migrate does not process any other
members that match the specified criteria.

Unconditional
To continue processing regardless of errors discovered during parsing of each member.

If you have a list of members that you want to place under SCLM control, migrate attempts to
process all the members matching the selection criteria, regardless of any errors encountered.

Forced

Forces SCLM to create a new accounting record for the members specified regardless of previous
status. Processing stops after the first error is encountered.

If you have a list of members that need to be changed, migrate will create new accounting records
for any members specified. This can be used to update language, authorization code or change
code information for the specified members.

Output control

Specify the destination for messages, report, and listings when they are executed (Ex) or submitted

(Sub), by entering the corresponding destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or
4 for None.

Process
You can call the processing part of the migration utility from the interactive or batch environment by
selecting Execute or Submit, respectively. If you request batch processing by selecting Submit, you
must specify the job statement information that is used in the JCL generated for batch processing.

For information about using a unique jobname on the jobcard in batch processing, see “Batch
Processing” on page 250.

Printer
Specify the printer output class.

Volume
Specify the volume on which SCLM should save data sets.

Database Contents Utility

You can use the SCLM database contents utility to retrieve information about the project hierarchy from
the project database and produce a report. You control the order and format of the data in the report. The
utility generates a report that lists the members that match your selection criteria.

This accounting data can then be extracted for members in the database that meet the selection criteria
you specify.

The output from the database contents utility can be used as input to other project-defined tools or as
input to the SCLM services using the FILE format of FLMCMD.

Chapter 9. Using SCLM functions 177

Database Contents Utility

Figure 86 on page 178 shows the panel that appears when you select Option 4, Database Contents, from
the Utilities panel.

Menu SCLM Utilities Jobcard Help

SCLM Database Contents Utility - Entry Panel
Command ===>

Selection criteria: (Pattern may be used for Group, Type or Member)

Project . . : PDFTDEV
Group SBURNF
Type . : : : *
Member . . . %

Enter "/" to select option
/ Change additional selection criteria
/ Change customization parameters

Output control:

Ex Sub Process . . 2 1. Execute
Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer
Tailored . . 3 3 3. Data set Printer . . H
4. None Volume . .
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel
Figure 86. SCLM Database Contents Utility (FLMRC#P)

The fields on the Database Contents Utility panel are:

Project
The project that you specified on the SCLM Main Menu. An Alternate field also appears if you specified
an alternate project.

Group
The groups that are to be reported. Only groups defined to the project definition are allowed.
Type
The name of the type you want processed. Only types defined to the project definition are allowed.

Member
The name of the member you want processed.

Change additional selection criteria
Select this field if you want to change the additional selection criteria. The panel shown in Figure 87
on page 179 appears when you select this.

If you change additional selection criteria, the changes are carried over from one execution to another.
If you do not select this field, and thus do not change the additional criteria, the criteria from the last
report are used.

Output control
Specify the destination for messages, reports, and tailored output when they are executed (Ex) or
submitted (Sub), by entering the corresponding destination number: 1 for Terminal, 2 for Printer, 3 for
Data set, or 4 for None. You cannot select Terminal for both Report and Tailored Output. Similarly, you
cannot select None for both Report and Tailored Output. If the tailored output is to be used as input to
a tool or to the SCLM services, Data set should be specified for Tailored Output.

If you enter Terminal, Printer, or Data set in the Tailored Output field, the panel shown in Figure 89 on
page 182 appears.

Process
You can call the processing part of the database contents utility from the interactive or batch
environment by selecting Execute or Submit, respectively. If you request batch processing by
selecting Submit, you must specify the job statement information that is used in the JCL generated for
batch processing.

178 z/0S: z/OS ISPF SCLM Guide and Reference

Database Contents Utility

Printer
Specify the printer output class.

Volume
Specify the volume on which SCLM should save data sets.

For information about using a unique jobname on the jobcard in batch processing, see “Batch
Processing” on page 250.

Specifying selection criteria

The portion of the project database that SCLM displays is determined by the parameters you specify. You
can use patterns to specify a variety of acceptable values for the accounting information fields. See
“Selection parameters” on page 363 for more information and examples.

The panel in Figure 87 on page 179 is displayed if you select "Change additional selection criteria" field on
the Database Contents Utility panel.

If you do not select this, the panel does not appear and the reports are generated with the values that
already exist on the Additional Selection Criteria panel.

Menu

SCLM Database Contents - Additional Selection Criteria
Command ===>

Selection criteria: (Patterns may be used)

Authorization code . . REL Data type . . 1 1. Account
Change code * 2. Build map
Change group USERID 3. Both
Change user id %

Language * Enter "/" to select option

/ First occurrence only
Hierarchy search information:

Architecture Control . . 3 1. In Scope . . 1 1. Normal
2. Out 2. Subunit
3. Not used 3. Extended

Architecture Group . . . USERID

Architecture Type . . . ARCHDEF

Architecture Member

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 87. SCLM Database Contents - Additional Selection Criteria (FLMRCA)

The fields on the Additional Selection Criteria panel allow you to specify accounting and architecture
information that the utility uses to identify the members to be processed.

Accounting information fields

When you specify values or patterns for the accounting information fields, the utility selects any member
that has accounting information matching all of the patterns or values for all fields you specify.

Use the following accounting information fields to select members:

Authorization code
Members that are assigned an authorization code matching the authorization code. Authorization
codes cannot contain commas.

The logical NOT symbol (=) in the pattern specifies only the members that are not assigned an
authorization code matching the pattern.

Change code
Members that can be edited that were assigned a change code matching the change code pattern.
Change codes cannot contain commas.

Chapter 9. Using SCLM functions 179

Database Contents Utility

Only one of the change codes assigned to the member must match the pattern. The logical NOT
symbol (=) in the pattern specifies only the members that are not assigned a change code matching
the pattern.

Change group

Members that were last changed in a group matching the change group pattern.
Change user id

Members that were last changed by the user ID matching the change user ID pattern.
Language

Members whose language matches the language pattern.

Data type
Specify the following values:

Account
To report exclusively on accounting information.

Build Map
To report exclusively on build map information.

Both
To report on build map and accounting information.

Data type defaults to Account if nothing is specified.

First occurrence only
If you select this and use more than one group pattern, a precedence system determines which
members are selected.

The groupl pattern takes precedence over the group2 pattern, which takes precedence over the
group3 pattern, and so on. If SCLM finds versions of a member in groups matching more than one
pattern, it selects only the version at the group with the most precedence. If more than one version of
the member matches the pattern with the most precedence, it selects all of those versions.

If you do not select this field, SCLM selects all versions of all members.

Hierarchy search information

These fields allow you to use architecture definition criteria to select members. The architecture
definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the Architecture Control
field. If you specify an architecture that has never been built, none of the members is selected. If you
specify an architecture that has been built but is out of date, the resulting data is inaccurate. Promote the
architecture in report-only mode to see which components are out of date. Patterns are not valid for
architecture definition fields.

Architecture Control
Specify the following values:

In
To select members controlled by the architecture definition.

Out
To select members not controlled by the architecture definition.
Not used
To indicate that an architecture definition is not used to identify selected members.

Architecture Group
The group identifying the lowest group in the hierarchy where SCLM should find the architecture
definition.

Architecture Type
The type containing the architecture definition that controls the selected members.

180 z/0S: z/0OS ISPF SCLM Guide and Reference

Architecture Member

Database Contents Utility

The member containing the architecture definition that controls the selected members.

Scope

Specify the following architecture scope:

Normal

To select members that do or do not have compilation unit dependencies.

Subunit

To select members that do have compilation unit dependencies.

Extended

To select members that do have compilation unit dependencies.

The database contents report contains a list of all members that you select from the selection criteria. If
you request tailored output, SCLM generates the data set from this list of accounting and build map

information.

Figure 88 on page 181 shows an example of a database contents utility report that SCLM generates when
you enter NONE in the Tailored Output field on the SCLM Database Contents Utility panel.

O DATABASE CONTENTS UTILITY REPORT O
SELECTION CRITERIA

@) PROJECT : PROJ1 @)
ALTERNATE: PROJ1 AUTHORIZATION CODE : REL

O TYPES : SOURC* CHANGE CODE .o O
MEMBERS : * CHANGE GROUP . USERT

O GROUP 1 : USERT CHANGE USER ID ; O
GROUP 2 : INT LANGUAGE . o*

(:) GROUP 3 : FIRST OCCURRENCE ONLY : YES (:)
GROUP 4 DATA TYPE 1 ACCT
GROUP 5

O GROUP 6 O

O ARCHITECTURE SELECTION CRITERIA : IN O

O GROUP . USER1 O
TYPE : ARCHDEF
MEMBER : FLMO1LD4

O SCOPE - NORMAL O

@ DATE: 02/23/1989 TIME: 11:26:18 O

O | DATABASE CONTENTS REPORT PAGE 2 | O

————————————————————————————— TYPE: SOURCE === =m= == mmmmmmmmmmm oo oo

O | MEMBER GROUP1T GROUP2 GROUP3 GROUP4 GROUPA GROUPG C

O | FLMoWDs USERT O

_ FLMOIMD5 INT

O | FLMoIvDs INT O

————————————————————————————— TYPE: SOURCED —=mmmmmmmmmmmmmmmmmommmmoememeee |
O | INCLUDE3 INT O

Figure 88. Database Contents Utility Report

Note: An asterisk (*) next to the group name on a report indicates that the member represents build map

information.

Chapter 9. Using SCLM functions 181

Database Contents Utility

Tailored output

If you want to tailor the database contents output, select Terminal, Printer, or Dataset in the
Tailored Output field on the Database Contents Utility panel. The Customization Parameters panel
appears, shown in Figure 89 on page 182, which you use to generate the tailored output.

SCIM Database Contents - Customization Parameters

Report name STATISTI
Report line format . . . @@FLMMER @@FLMLAN @@FLMCML @aFLMNCL @@FLMBL
MTLS @@FLMCMS @@FLMNCS

Enter "/" to select option
/ Page headers
/ Show totals

Command ===
Fl=Help F2=5plit F3=Exit F7=Backward F8=Forward F9=8wap
Fl0=Actions Fl2=Cancel

Figure 89. SCLM Database Contents - Customization Parameters (FLMRCT)

The fields on the Customization Parameters panel are:

Report name
The title of the report in the tailored output. The maximum length is 35 characters. Do not use
commas in this field. The default value for Report name is STATISTICS REPORT.

Report line format
The format of a line of data in the tailored output. The line format can be up to 160 characters long.

Report line format has a default value, which is used when no values are specified:

@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS
@@FLMCMS @@FLMNCS

If you use SCLM variables with data lengths greater than 8 characters, place these variables at the
end of the report line to ensure that the columns in the report line up evenly.

You can use any string or character as a literal. When you use literals, the string prints once on each
output line.

The report line has a maximum size of 2048 characters. The tailored output prints 80 characters per
line. This can produce multiple 80-character lines for one report line.

Press Enter to confirm these requests or enter END to cancel them.

Page headers
Select "Page headers" to include page and column header information in the tailored output. If you
want to output a page header, input parameter information appears in the tailored output. You can

182 z/0S: z/OS ISPF SCLM Guide and Reference

Database Contents Utility

also specify a title. Data is positioned in column 2 of the tailored output. Column 1 is used for carriage
returns.

If you do not select "Page headers", page headers and carriage returns are suppressed. The data is
positioned in column 1 of the tailored output.

The default value for "Page headers" is that they are selected.

Show totals
Select this to total the numeric data fields and show the totals in the tailored output. SCLM outputs a
summary line at the end of the output that totals the values of the numeric fields in the output. The
output also includes a count of the number of members reported. The default value for "Show totals"
is that they are selected.

Figure 90 on page 184 shows an example of a tailored output. The title of the report is Sample Report.
The report line format, specified as @@aFLMPRJ @@FLMGRP @@FLMTYP @@FLMMBR, causes the utility to
generate output consisting of the members reported in the database contents report and their associated
included members.

Tailored output examples

The tailored output that appears in Figure 90 on page 184 is a formatted representation of the accounting
and build map information of the members that matched the selection criteria. The tailored output format
specification consists of SCLM variables and constant values. The tailored output displays the SCLM
variables as headers over the lines of variable values.

“SCLM variable and metavariable descriptions” on page 631 provides a list of SCLM variables that can be
used in the database contents utility.

Chapter 9. Using SCLM functions 183

Database Contents Utility

PROJECT
ALTERNATE:
TYPES

MEMBERS
GROUP 1
GROUP
GROUP
GROUP
GROUP
GROUP

D LM

GROUP
MEMBER
SCOPE

PAGE HEADER
SHOW TOTALS
REPORT NAME

DATE: 200

DATABASE CONTENTS UTILITY REPORT

SELECTION CRITERIA

¢ PROJT

PROJA

: SOURC*

: USER1
. INT

S : YES
: YES
: SAMPLE

0/01/06

AUTHORIZATION CODE

CHANGE CODE
CHANGE GROUP
CHANGE USER ID
LANGUAGE

FIRST OCCURRENCE ONLY :
1 ACCT

DATA TYPE

ARCHITECTURE SELECTION CRITERIA :

: USER1
TYPE : ARCHDEF
: FLMO1LD4
: NORMAL

CUSTOMIZATION PARAMETERS

REPORT

TIME: 09:52:17

IN

: REL
T

: USER1

YES

SAMPLE REPORT

O 0000000000000 0000O0O0

eef | MALT eeF|MGRP eeF | MTYP eeF|MMER
PROJT USERT SOURCE FLMO MDA
PROJT INT SOURCE FLMOIMDS
PROJ INT SOURCE FLMOMDE
PROJ INT SOURCEZ INCLUDES

FAGE i

ClI OO0 00000000000 O0O0

C O O O QO

Figure 90. Database Contents Utility Tailored Output

The tailored output examples in figures Figure 91 on page 185 through Figure 94 on page 186 show

examples of change code, accounting statistics, source listing, and cleanup reports.

Change Code Report

The report name is CHANGE CODE REPORT.
The report line format input for this example is: @@FLMGRP @@FLMTYP @@FLMMBR @@FLM$CD @@FLM

$CC. The page headers appear on all pages of the report. Totals do not appear. Figure 91 on page 185

shows the tailored output.

184 z/0S: z/OS ISPF SCLM Guide and Reference

Database Contents Ut